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that is, by taking a as defined by the average line between the two characteristics 
in the physical plane, or the line normal to the midpoint of the corresponding 
characteristic epicycloid arc in the hodograph plane (see Fig. 44). The close 
approximation of the characteristic epicycloid as given by f from (30.26) and 
Table 1, to the oblique hydraulic-jump relations (30.61) is strikingly illustrated 
when they are both plotted in the hodograph plane as in Fig. 45 d [see also PREIS- 
WERK (1938)]. The trace of the endpoint of the velocity vector for the oblique 
shock wave of gas dynamics, generally called the “shock polar”, is also shown 
in Fig. 45 d for a specific heat ratio y = 2. 

As long as f from (30.26) is in close agreement with the oblique hydraulic 
jump relations (30.61), then the problems involving the interaction and reflection 
of hydraulic jumps can be closely approximated by the same procedure as detailed 
previously for the characteristic epicycloids involving compression waves (see 
Figs. 43 and 44). Whenever the required flow deflection 6 is greater than that 
provided by the epicycloid passing through Fl, as shown in Fig. 43, then sub- 
critical flow follows the curved or normal hydraulic jump as indicated by N = 1 
in Fig. 46. Similarly, N = 2 defines the maximum flow reflection angle (8) that 
can occur without ending in subcritical flow with a curved or normal hydraulic 
jump. In both cases two curves are shown for the oblique hydraulic jump: 
one shows the turning angle 8 that will make the flow critical (F,=I), and the 
other one is the maximum possible turning angle emax for any oblique hydraulic 
jump at the given value of q. The latter always produces subcritical flow (F,< I) 
as indicated in Fig. 43. 

All of the preceding results primarily hold for hydraulic jumps in rectangular 
cross-section channels with a nearly horizontal bottom. BAKHMETEFF (1932) 
shows experimentally the various effects of steepening bottom slopes. He also 
generalizes (30.51) so that it will apply to any constant cross-section shape. 
However, it must be noted that our Eq. (29.3) shows conclusively that (30.51) 
which completely neglects the w velocity component, cannot be applicable to 
channel walls that are not nearly vertical. Sloping sides on a channel would 
increase the vertical velocity gradients, make a normal hydraulic jump impossible, 
and induce unsteady vortex motions. 

It must also be noted that all of the preceding results are valid only for rela- 
tively small bottom slopes, as indicated by the direct comparison of (30.50) 
and (30.51) with (28.1) and (29.3). When the flow is rapidly varying because of 
large changes in the bottom slope, then the change in surface profile curvature 
is so pronounced that the pressure variation can no longer be considered as hydro- 
static. For example, over the spillway of a dam the centrifugal force due to the 
streamline curvature can actually exceed the hydrostatic pressure, thereby leading 
to a pressure less than atmospheric resulting in flow separation or violent oscilla- 
tions. At present spillway design is based on semi-empirical methods or model 
tests since no satisfactory mathematical analysis is available. 

31. Higher-order theories and the solitary and cnoidal waves. It will now be 
shown that many of the preceding methods and results based on the shallow- 
water approximation are valid only if the local variations in water depth are 
not too large, and the average or undisturbed water depth is sufficiently small. 
The first requirement implies that the solutions of the first-order nonlinear 
shallow-water equations (28.1) do not greatly differ (at least for Froude numbers 
not near unity) from the linearized solutions given by (29.3) or (29.7). The second 
requirement essentially demands that the depth h be much less than the effective 
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702 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 31. 

wavelength 3L in any application, say f < &, in order to reduce the effects 
associated with the infinitesimal-wave approximation. 

As already discussed, the infinitesimal-wave approximation predicts that 
the fluid particle motion varies with the distance below the free surface, and 
also that the propagation velocity depends upon the wavelength, as shown in 
Sect. 15. There it was proved that the velocity defined by 

can only be considered a phase velocity while the actual rate of propagation of 
energy is associated with the group velocity defined by 

c-,p(i+ siny;$j =c[l-+(y2+...] (31.2) 

[see also LAMB (1932, p. 381)]. Any such variation will directly interfere with 

the applicability of the shallow-water results. However, as long as i < -& 
it is seen that the phase velocity and the group velocity are both satisfactory 
approximations to the shallow-water first-order result that c =vgT and is in- 
dependent of the effective wave length. 

This means that if small-scale model tests are used to simulate results appro- 
priate to the shallow-water theory, then the undisturbed water depth should be 
less than -& the principal model, dimensions. Consequently, if models less than 
IO cm in effective dimensions are used, the depth of test water should be less 
than 1 cm, so the capillary ripples produced by surface tension must be considered. 
As shown in Sects. 15 and 24 the effect of the surface tension T is to increase 
the phase velocity for the short wavelength capillary ripples so that (31.1) is 
replaced by 

For ordinary water (at 20" C, T = 72.8 dynes/cm, Q = 0.998 gm/cms) this gives 
the interesting result that both the phase velocity and the group velocity are 
closely approximated by v$ for all 1> 2 cm if k M 4 cm. However, in any small- 
model tests the surface wave patterns formed by the capillary ripples must be 
ignored since they are short-wavelength surface waves that are never in accord 
with the long-wavelength shallow-water theory. 

Except for the section on hydraulic jumps the preceding shallow-water results 
have all been based entirely on (28.1), the first approximation to shallow-water 
theory, and this will now be shown to be limited to relatively small wave ampli- 
tudes even though the complete nonlinear equation (@.I) be used, and even 
though the bottom surface be flat and horizontal. The second approximation 
to shallow-water theory will be shown to immediately yield particular solutions 
corresponding to continuous permanent wave profiles of finite amplitude that 
can be propagated without a change in form or shape if viscosity effects are 
neglected. These permanent, finite-amplitude wave forms are the cnoidal waves 
discovered by KORTEWEG and DE VRIES (1895) which reduce, in the limiting case 
of essentially infinite wavelength, to the solitary wave of RUSSELL (1837, 1844) 
which was first analyzed theoretically by BOUSSINESQ (1871, 1872) and RAY- 
LEIGH (1876). 

Ronald W. Yeung
"Surface Waves Online" - Copyright 2002, Regents of the University of California.  All Rights Reserved



sect. 31. Higher-order theories and the solitary and cnoidal waves. 703 

The second approximation to shallow-water theory will show that the limita- 
tion of the nonlinear first approximation to relatively small amplitudes is primarily 
due to the fact that the variation in the vertical velocity cannot be neglected as 
the wave amplitude is increased. This of course invalidates even the rectangular 
channel hydraulic analogy to compressible gas flow, since, as previously discussed, 
the principal assumption of the hydraulic analogy is that the vertical acceleration 
be negligible. 

The third approximation to shallow-water theory will then be presented to 
obtain new relations which will predict the limiting heights of the continuous 
finite-amolitude steadv-state wave forms and give, for the first time, the complete 
second approximation to the 
cnoidal and solitary waves. It 
will be found that the pressure 
is no longer hydrostatic, there- 
by violating the remaining princi- 
pal assumption of the hydraulic 
analogy and the ordinary classi- 
cal shallow-water theory. 

Y ha7 
m- 

a 

a) The first alzd second a$- 
proximations to the cnoidal and 
solitary Waves. We will now ex- 
tend the perturbation method of 
FRIEDRICHS (1948), which was 
used to derive the nonlinear first- 
order approximation (28.1) to 
shallow-water theory, to obtain 
the second and higher orders of 
approximations for the special 
case of the steady-state propa- 
gation of a wave independent of 

b 
Fig. 47a and b. (a) Solitary wave over a flat horizontal bottom. 

(b) Cnoidal wave q(x) = a cn* (A wx, k). 

z and t over a flat horizontal bottom described by y = - h, = const as in Fig. 47. 
First we will show that the only steady-state finite-amplitude solution of the 

first-order equation (28.2) is y(0)=qO=const and z&~)=u~= const. This is most 
easily proved by substituting the solution of the zeroth-order terms in (10.24) 
for steady water flow over a flat horizontal bottom, namely 

&) zzz f,&O) (x) ) @) zzz 0, p(0) = 0, y/(O) = yp (x) ) (31.3) 

into the first-order terms in (10.27) to obtain 

do) = u. = const , y(l) r.r 0, pp=- eg, q(O) = q. = const (3 1.4) 

since $)= 0 =$$). Consequently the only finite-amplitude first-order steady- 
state solution must have @‘)‘=o, which would permit only the hydraulic jump 
as a solution since Y#=O and zc(O)=const on each side of the finite discontinuity 
defining the hydraulic jump. This is in agreement with the well-known fact that 
the gas-dynamics equation or (28.2), predicts that any finite amplitude disturbance 
must form a finite discontinuity which is a shock wave, or hydraulic jump [see, 
e.g., LAMB (1932, pp. 278, 4&i)]. However, the second-order approximation of 
shallow-water theory (10.33) does yield a permanent finite-amplitude, steady- 
state wave profile that does not form a discontinuity. These are called the cnoidal 
waves, discovered by KORTEWEG and DE VRIES (1895), and the solitary waves 
of RUSSELT, (1817, 1844), BOUSSINESQ (1871, 1872), and RAYLEIGH (1876). In 
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704 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 31. 

order to obtain the higher-order approximations and limiting heights of these 
waves, it is more convenient to use exactly the same non-dimensional variables 
introduced by FRIEDRICHS (1948), and also used by KELLER (1948), namely, 

.s=co2h2, CK=OJOX, /3=y/h, H=hz,/h,% 

z+,B)=u(x,y)/j/gh, v(ctJ)=*wh, 

Y(4 = 7 W/h J ~(a B) =fi( yhtk 
> 

X, (31.5) 

Y(a) = Y(O) + 8 Y(l) +’ &2 y(2) + . . * ) 

q(x) =hy(O)+,2h3Y(1)+~4h5Y’2)+ . . . . 

the only difference in notation being that x and y are now defined as in Fig. 47; 
consequently, the flat horizontal bottom is given by y = - 12, or /3 = - ha/h = - H, 
and the expansion parameter &=dh2 is used as defined in (10.23), with (31.5) 
replacing (10.21). 

Introducing the transformation defined by (31.5) into (31.4) and into the 
corresponding equivalent of (10.33), we obtain 

&N = 0 = &) \ 

24(O) (cc, /3) = u. = const , Y(O) (‘a) = Y, = const F qo/h, 
np’Z-1, rcp=o, z$)=w&~)=o, z&J=-I#), 7 (31.6) 

560 24p + zp = 0 

.(2)(-H) = o; 

w(2) (Yo) = u,Y(l) 
& (Yo) = - y4”‘@ = Y(l) (a) . 

These expressions may be integrated to obtain 

24@) (cc, /9) = f (cc) = u(l) (Lx) ) 

wt2) (a, ,8) = d2) (cc, /3) - d2) (a, - H) 

n”‘(~,,5)=--Sofccdcr=-(~,f+C)= dl)(ct) = Y(l)(w) ) 

The identities in the last equation show that the solution for constant zco is 
restricted to the unique value defined by 

~(~,y)=~ol/gh=Vgh(Yo+H)=~g(~o+h2,)=const (31.8) 

which corresponds to the infinitesimal-wave propagation velocity (28.3) and 
shows that the steady-state solution will be in the <neighborhood of the critical 
speed defined by a Froude. number of unity. However, &=/(a) now provides 
a finite-amplitude steady-state solution that does not form a discontinuity; 
consequently, the behavior of the second-order shallow-water theory is mathe- 
matically completely different from the first-order (28.2) shallow-water theory 
or the gas-dynamics equations. The pressure variation is still hydrostatic, since 
& does not depend upon B, and only w c2) has a direct dependence upon /3 (= y/h). 

Now in order to continue the solution and determine f(a) we must introduce 
some a3 terms. By following the same procedure as used in collecting the e2 terms 
for (1O.jj) we obtain for the particular case of steady flow over a flat horizontal 
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bottom the following additional terms that are required for completing the second 
order solution : 

f.48”’ = vp, uh2' =- w(3) 
0' 

Go $@'+ u(l) f@ + @' = 0 

(31.9) 

n(2'(yo) =- yc2, $' = yc2,. 

These expressions were first given by KELLER (1948) and they may be directly 
integrated to give the following: 

) (31.10) 

The last equation for ~(3) gives the following expression for the $ term in the sur- 
face profile 

uoYce~(dI)=~of2+Cf+Q(Y~+~HY~-2H3)~,,-(Yo+H)R+const, (31.11) 

while a similar expression may be obtained directly from z(~)(Y~) by equating its 
relation in (31.9) and (31.10) so as to obtain 

u. Y(2) (a) = u. 5-62) (Yo) = - u. [u(j u(2) + +dl)2]p=y 0 
=8u~(Yo”+2HY,)f,.--~R(or) --+~~f~+const. 1 

(31.12) 

Since (31 .I 1) and (31.12) must be identical, we may equate them and find 
that f(a) must satisfy the ordinary differential equation 

(31.43) 

after having introduced (31.8) to eliminate Y,. Eq. (31 .I?) may be integrated to 
162 3zto/oc-uofs-Cf2+$21~COf=const. (31.14) 

Upon noting from (31.7) that f(a) =.(r)(m) and 

it is evident that (31.13) and (31.14) are the same equations as obtained by 
BOUSSINESQ (1871, 1872), RAYLEIGH (1876), KORTEWEG and DE VRIES (1895), 
LAVRENT’EV (1943), and KELLER (194.8). The physical significance of each term 
in (31.14) was first pointed out by BENJAMIN and LIGHTHILL (1954), who derived 
(31.14) in an entirely different manner, starting with the same series expansion 
of the stream function as was introduced by RAYLEIGH (1876). BENJAMIN and 
LIGHTHILL (1954.) use the continuity equation (30.49), the specific-energy equa- 
tion (go. 50)) and the specific-momentum equation (30.5 I) to derive the equivalent 
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of (31.14), and then they give a very useful discussion of the mathematical and 
physical behavior of its solutions. 

The appropriate solution of (31.13) f or the boundary conditions shown in 
Fig. 47 is given by the square of the Jacobian eigptic function “cn” having the 
modulus o < kg I and the real period 

42 
4W) = 40 I&& > 2n. s 

Substituting 
f(ct) =-Bcn2(Acc,k) (31.15) 

into (31.13) we find that (31.15) is a solution if, and only if, O< KS 1 and 

B+;AZ/$=~ka= co 
u. 2k2--1 2A2(1-kk2) * (31.16) 

Substituting (31 .I 5) into (31.7) and (31.5) we obtain 

rl(X)=rlo+02h3Bu,[cn2(Awx,k) -$4+0(4. 

The boundary conditions in Fig. 47 then yield 

y(o) =q,+~~%~Bu,~=a, 

~(&)=q,,-c~%~Bu~~=o, 

a =oPh3 Bu,,, 2k2--1 
70 = a -g--) 

q(x) =acn2(Awx, k). 

(31.17) 

Then upon introducing (3 1.8) and (3 I .16) into (3 I .I 7) we obtain 

as the exact second-order shallow-water theory solution for the first approximation 
to the cnoidal waves OI KORTEWEG and DE VRIES (1895). The remaining terms 
in (31.6) and (31.7) may similarly be solved to give 

cn(Amc,,k)sn(Awx,k)dn(Aox,k) + p (31.19) 
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where cn, sn, dn are the Jacobian elliptic functions with the argument Awx 
defined by (31.18). It must be noted that O<kS1; K can never become 
identically zero for two reasons. First, because for k =0 

cn2 (A cu X, 0) = cos2 (A w X) 

is not a solution of (31.1)) or (31.14), and second, because the asymptotic expan- 
sions given in (31.18) and (31.19) are only valid as a2/k2+0. 

The limiting case of k = 1 corresponds to an essentially infinite wavelength 
since K(ks)-+cc as k2-+1, and the cnoidal-wave solutions reduce to 

(3f.20) 

which provides the exact first approximation to the solitary wave. 
All of these solutions for the cnoidal wave and the solitary wave are in exact 

agreement with the expressions first given by KORTEWEG and DE VRIES (1895, 
pp. 430-431) if one neglects the terms of O(U/F,~)~. It will now be proved that 
the terms of O(a/rZ,)2 must be neglected in these first approximations because 
the second approximations introduce additional terms having this order of 
magnitude. 

We can continue to the next order of approximation by collecting the remain- 
ing terms corresponding to ~3, and adding some of the e4 terms that are necessary 
in order to complete the solution 

n(3) (YJ = Y(3) - Y(l) 7zp (Yo) ) 

q =: 43), q,q’ = - $‘, 

u. $43’ + $&l) @' + ,(2) @’ + nA3’ + u(2) $’ = 0) 

240 wL3’ + z&l) t&2’ + 7-g’ + 2) wqJp ’ (34.21) = 0, 

v'4'(yo) = u. y;3' + q,$u(l) yp + ,(2) y,(l) - WlB”’ y(2) - up Y(l), 

w(4) (- H) = 0. 

Now we can combine the expression for vc3) in (31.10) with that in (31.21) 
to write 

24'3'(01,/3) =Jwpdp =~((P4+4HB3-88H3r6)f,,,,- 

-Q(B"+wmm+s(4. 

Then the expression for wc4) in (3 1.21) yields 

(3 1.22) 

d4) (a, ,!?) = - J’ui3) (tc, /3) d,8 = - [(/I + H) S,+ 

+,~~(~5+5~~4-2OH3P2+16Hhi!,.~~,-)(~3+9HP2-2H3)R~~~~.) 
45" 
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The boundary condition defined by the expression for v(4) in (31.21) thereby 
gives one relation for Y@) that may be written as 

u. yi3' (a) = v(4) (Yo) - [$&Cl) yi2' - $) Y(2)] - [G(2) yaw - $3' y(l)] 

= v4(Yo) - [u(l) y'2qa - [u(2) Y(l)] 1 
(31.24) 

d( 

which may be directly integrated, upon substituting (31.23) for v14), as 

fl.40 y,(3) = J v(4) (Y,) da - z&l) (YJ Y(2) - $&u(2) ( Yo) Y(l) 

=const-- &(Y~+5HYo4-20H3Y~+16H5)fbldla(1+ { 

-a(Y03+3HyD2-2H3)EZb,+(Y,+H) s(u)+ (31.25) 

+~If~~(y,“+2HY,)f,,--.:R--~u,f2] + 

+ 1; w + 2f.l y,) fa, - R(or)] [%Jf + Cl}. 

Another relation for Y(s) may also be obtained from the other boundary con- 
dition defined by the expression for ~(3) in (j1.21), namely 

Y(3) (cc) = n(3) (Y,) + Y(l) 7p (Y,) ) (3 f-26) 

where zc3) itself may be obtained by integrating the expressions for nk3) and 
zzf) in (31.21) to obtain 

d3) (ct, /?) = - u. d3) - 24(l) ut2) - 4 [v(Z)]2 + const . (31.27) 

Then substituting 7tc3) from (31.27), $) from (‘ji.lO), &)=f, ~(2) from (31.10), 
z4c3) from (31.22), y(l)=- (uof +C) and Yt2) from (31.12) into (~1.26) we obtain 
another relation for Y(s), namely, 

~UY’“‘(,)=-{,~,~(Y04+4HYo3-sH3Yo)f,,,,--~~(Y~+2HY,)R,,-t 

+~~s-gzto(y,z+2HY,)ff,+~~fR+~~~(f,)2+ 

1 

(31.28) 

+ hf + C) 4 f,,+ constl. 

These two expressions for Y c3), (31.25) and (31.28), must be identically equal; 
therefore, since u,, is defined by (31.8), we find that the unknown function R 
must satisfy the ordinary differential equation 

1 
-uiR,,--($+jf)R+const 

, 

3 

=~u~(u~-5H2)faaaa-~(~~--H2)ffaa+ a (3 1.29) 

+~(~:+H2)f~~+~~~(f,)z+~f3, 

the other unknown function S(u) having been eliminated since ui =Y,+H. 
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When f(a) is given by .(?I .15), then the solution of (3 1.29) is 

and (31.11) or (31.12) give the e2 term of the wave profile as 

Y(2)(,) = (z)” {j- (3&)2cn4 (A a, k) - 

5 - i. $feT cn2 (A g, k) + ~~<~~~l). 

-- 

709 

3 (31.30) 
3 1 I 

(31.31) 

Consequently, the second approximation to the cnoidal-wave profile is obtained 
from the preceding and (31.5) as 

yI (x) = q. + I?.3 k3 Y(l) + cd I25 Y(2) + 0 (ES) I 

‘cn4 (A o x, k) - -t Zk& cn2(A ~IU x, k) + (34.14 

+ 
12-57k2+57k4 

20(2k2-l)2 - I ’ I 
where 

~l=Ccof%3=(A~)2~(2k2-~)(hu~)3 

Then the boundary conditions shown in Fig. 37~ yield the relations: 

which may be solved to give the second approximation 

x [I- cn2 (A co X, k)] + 0 &-)” , 

where now 
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The remaining s2 terms from (31.10) may then be combined with the e terms 
from (31.7), by means of (31.5), to give 
Pb Y) _ rlw-Y 

For the solitary wave we have k = 1 and essentially infinite wavelength, so 
that (31.36) reduces to 
rl(4 _ a __ - .c sech2 (A w x) - % (ha)’ sech2 (A cu x) x 
hce oo 

x [I - sech2 (A w x)] +i (ej3, 

(31.37) 

x/1-6&-3$sech2(Ao,x)]+O(&j%. 
I 

The celerity or propagation velocity c of a solitary wave is defined by (31.3 7) 
as the constant uniform motion attained as x+00, 

(34.38) 
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In Fig. 48, Eq. (31.38) is shown to be in better agreement with recent experimental 
data than is the commonly used Boussinesq (1871)-Rayleigh (1876) propagation 
velocity given by 

The past success of the Boussinesq-Rayleigh equation, as opposed to the 
propagation velocities derived by MCCOWAN (1891), as indicated in Fig. 48, is 
easily- explained when 
one notices the close 
numerical agreement of 
the coefficients of the 

Boussinesq-Rayleigh 
equation with the exact 
second approximation 
given by (31.38). 

A comparison of the 
second approximations 
with the first approxi- 
mations to the cnoidal 
waves proves conclusi- 
vely that only the proper 
order of a/t&, must be 
retained for each order 
of approximation. For 
example, a comparison 
of (31.18) with (31.35) 
shows that a completely 
erroneous second ap- 
proximation would be 
obtained by trying to 
extend the first approxi- 
mation to include an 
additional a/hm term. 
The reason for this is 
evident upon comparing 
the first and second ap- 
proximations for rjO in 

135 

14 
P aI a2 a3 a4 as a6 a7 a9 a9 ~0 

a/h, 
Fig. 48. Propagation velocity of solitary waves. 

(31.17) and(31.34).Each I I I I I I I 
successive approxima- -I -3 -2 -/ 0 I z 
tion directly affects x/L 
all the coefficients of Fig. 49. Comparison of first (31.17) and second (31.37) approximation to the 

solitary-wave profile, q(x). 
the corresponding a/h, 
terms. Fig.49 shows the effect of the second approximation on a solitary wave. 

Of course it must be remembered that the expansion method of FRIEDRICHS 

(1948), which was used to obtain all the preceding results, is applicable only to 
shallow water, or long-wavelength wave propagations. However, this is precisely 
the nature of the solitary wave, especially if the amplitude a/& is relatively small, 
since its wavelength, as a member of the family of cnoidal waves, is essentially 
infinite since K(k2)+cc when k+l. Also, FRIEDRICHS and HYERS (1954) proved 
that this expansion method does yield an existence proof for the solitary wave, and 
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thereby demonstrate that it will at least provide asymptotic descriptions of the 
exact solution for the solitary-wave problem. The corresponding existence proof 
for cnoidal waves (in the neighborhood of the critical speed defined by a Froude 
number of unity) was given by LITTMAN (1957). Again this justified the Fried- 
richs expansion method, at least as an asymptotic type of series development. 
An additional discussion of these existence proofs is given in Sect. 35. 

/3) The limiting height and velocity of firofiagation of cnoidal awd solitary waves. 
It is interesting to note that with the second approximation the pressure is still 
hydrostatic for y M 0, but is no longer hydrostatic as the bottom (y =-h,) is 
approached. Similarly, the variation of the horizontal velocity component with 
depth below the surface becomes important in the second approximation only upon 
approaching the flat horizontal bottom. However, the finite vertical velocity 
component is now seen to be the principal variation from the basic assumptions 
of first-order shallow-water theory. The first approximation given in (3 1.19) 
gives a monotonic variation in v(y) that is obviously necessary from physical 
considerations in order to satisfy the continuity equation. However, this mono- 
tonic variation in ,w(y) is of the higher order (a/hco)4 so that it can be neglected 
in the first-order equations (28.2) as long as the resulting local variations in 11 
are sufficiently small. 

The second approximation to the vertical velocity component, as given in 
(31.36), now shows that the variation of w(y) will no longer be monotonic as 
a/hM increases. This leads one to suspect that there is a limiting value to a/km 
for cnoidal and solitary waves. For example, (31.36) shows that in the neighbor- 
hood of the wave crest, where x w o and 

v(y) actually has a reversal in its direction if a[hm exceeds the value given by 

a 

t-1 - 

8k2 
h 00 max 9k2+2 

for any value of y 2 0. 
This limiting value can be substantiated, at least in the limit as K-+1, by 

noting that (31.33) has a real solution for Q only if 

2k2--1 a <x d -5 (2k2-l)2 
k2 h, h, 7-37k2(1-- k2) ’ 

leading to a limiting value of 

< .5k2(2k2---1) 
7-37ka(l-kT” (3 1.40) 

The most interesting application of these results is to the solitary wave, 
defined by k = 1, in which case we find from (31.38), (31.39) and (31.40) that the 
limiting heights and the corresponding total velocity at infinity are given by 

= 1”1- = 0.7273 > + = 0.7143, UC4 [ 1 _____ =1.284> 1.281. (31.41) 
vi3 max 

Either of these limiting heights would be satisfactory for a solitary wave since 
recent experimental investigations by IPPEN and KULIN (1955), DAILY and 
STEPHAN (1952), and PERROUD (1957) have shown that under properly controlled 
conditions most solitary waves have a/hzoo < 0.7, the maximum recorded value 
being 0.72. Not only are the limiting values given by (3 1.39) or (3 1.40) in excellent 
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agreement with recent experimental data, but they are consistent with the order 
of approximation involved. The value & is derived from the vertical velocity 
variation given to the order (u/at,)& by (31.36), while the value 4 corresponds 
to the terms governed by e2 or (a/&J2 in (31.32). 

Many attempts have been made to determine.the limiting height of a solitary 
wave. However, nearly all of the theoretical calculations have been based on 
STOKES’ (1880, p. 227) relation which assumes that for the limiting heights of 
any wave the wave crest must form a sharp peak or corner having an en- 
closed angle of 120” in order to reduce the relative local velocity to zero at the 
crest itself [see, e.g., Sect. 33 or LAMB (1932, p. 418)]. This 120” enclosed angle 
at the wave crest was assumed by MCCOWAN (1894), STOKES (1905), GWYTHER 
(lgoo), DAVIES (1952), PACKHAM (1952), GOODY and DAVIES (1957) and YAMADA 
(1957). Several of these values are compared in Fig. 48 with experimental data, 
and with the theoretical values given by (31.38) and (31.41). It is seen that none 
of these limiting heights for solitary waves are in as good an agreement with 
the experimental data as is (31.41). A reasonable explanation of the failure of 
the 120” sharp crest wave to provide a satisfactory limiting height for a solitary 
wave may be obtained by noting that KORTEWEG and DE VRIE~ (1895) proved 
that any finite-amplitude profile that did not correspond to (31.17) or (31.20) 
would not be steady with respect to time. Consequently, (3 1.3 7) defines the 
only possible steady-state solitary wave, and when a/k,>& the vertical velocity 
variation reverses its direction near the. crest. This probably leads to an unsteady 
wave crest that breaks unsymmetrically. 

Eqs. (31.38) or (32.52) show that the solitary wave occurs only in super- 
critical flow since the Froude number corresponding to the propagation velocity 
is always greater than unity. Its veIocity of propagation is always less than that 
of the corresponding hydraulic jump of the same height as may be seen by com- 
paring (30.55) with (31.38), after expanding it in powers of a/d,=a/h,: 

F’=~=1+t(~)-L(~)a+o(~~. (30.55’) 

However, the cnoidal wave can occur in subcritical as well as in supercritical flow, 
and as shown by BENJAMIN and LIGHTHILL (1954), the undulating flow in the 
subcritical region behind a hydraulic jump produced at all Froude numbers less 
than l? may well be represented by these cnoidal waves. The fact that cnoidal 
waves can form in subcritical flow is easily shown, even in the first approximation, 
by writing the horizontal velocity component from (31.19) as 

24 (0) __- 
v&G 

for all K 2 1, 

$$$+(I-&j(Cj<, 

(3 1.42) 

for k2 < G. 

Therefore (31.19) shows that any definition of the wave propagation velocity 
would be subcritical when KS<*. STOKES (1847) (see Sect. 7) has given two 
logical definitions, of the celerity or propagation velocity of permanent periodic 
wave forms, and each one would define a critical celerity corresponding to a dif- 
ferent value of k, varying as &r k2< I, the solitary wave [k = 1)’ being always 
supercritical for a finite amplitude. However, the existence proof for cnoidal 
waves by’ LITTMAN (1957) is only valid for average velocities (defined as the 
velocity of the vertical plane that would have zero average flux across it) that 
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are near critical. An interesting physical and mathematical explanation of these 
flow restrictions is given by BENJAMIN and LIGHTHILL (1954). The main consider- 
ation, as shown in Fig. 56 on page 754 and Sect. 35, is that the finite-amplitude 
periodic waves corresponding to kz<o.g may be better described by using in- 
finitesimal wave theory. This becomes necessary because the wavelength of the 
cnoidal waves decreases rapidly with k2 when K is near unity. Fig. 56 indicates 
that not only must the wavelength be large compared to the water depth, in 
order to satisfy the shallow-water expansion method, but also the amplitude of 
the cnoidal wave must become extremely small for values of kZ<o.9, or for 
subcritical flow. 

KORTEWEG and DE VRIES (1895) have also shown how negative cnoidal or 
solitary waves can be formed when the water is very shallow and surface tension T 
is considered. Their correct first approximation may be written as 

~=&(~jcxP(Awx,k), 1 

a/ho0 
4k2 (I- 3 T/egk&,,( ’ I 

(31.43) 

where the negative algebraic value is assigned to the surface profile whenever 

k,< gm+crn 
li 

for water. (31.44) 

These negative waves have a very small amplitude and a very large wavelength, 
but can create a surprising particle motion. It is interesting to notice that the 
depth of k, = & cm, which, if it could be maintained, would eliminate both soli- 
tary and cnoidal waves, is the same depth found from (31.1’) and (31.2) to give 
nearly the same value of lgh, for both the propagation velocity and the group 
velocity of infinitesimal waves (also see Sect. 15). Consequently the depth of 
Q cm seems to be the optimum for ordinary water (T= 72.8 dynes/cm) whenever 
one uses small models to simulate results appropriate to the first-order shallow- 
water theory of (28.2), since this particular depth minimizes the effect of group 
velocity and variation with wavelength for the infinitesimal waves, and mini- 
mizes the second-order effect due to the existence of finite-amplitude cnoidal or 
solitary waves. However, the variation of q must remain sufficiently small since 
a finite, increase in q above h o3 = 8 cm could still produce cnoidal or solitary 
waves. Also, the short-wavelength or capillary ripples that will form must be 
neglected in these model tests. 

F. Exact solutions. 
The word “exact” in this context is generally understood to mean solutions 

in which there has been no approximation in the equations or boundary con- 
ditions. However, this usage of the word does not exclude neglect of viscosity 
and, in fact, since positive results have been obtained only for perfect fluids, the 
treatment below will be restricted to them. Indeed, the present results in the 
theory of exact solutions are restricted, with few exceptions, to a very special 
class of motions, namely, those which can be represented as steady two-dimen- 
sional flows. 

In Sect. 32 some general theorems will be established. In Sect. 33 waves of 
maximum amplitude-to-length ratio are discussed; because the methods are 
intimately related, we have also included in this section a discussion of HAVE- 
LOCK’S method of approximating periodic waves. Sect. 34 treats methods of 
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obtaining explicit exact solutions and of various ones which have been obtained. 
In Sect. 3 5, the last, existence theorems are discussed, but only in a descriptive 
way, for proofs are highly technical and lengthy. 

. 

32. Some general theorems. This section will be devoted to several theorems 
of a rather general nature concerning the motion of a fluid with free surface in 
a gravitational field. The theorems in subsection 32cr. are mostly of a kinematical 
nature and are associated with the phenomenon of mass transport already dis- 
cussed in subsection 27~. The last part of this section is devoted to several theo- 
rems on energy and momentum. In subsection 32/3 some theorems concerning 
waves in heterogeneous fluids will be established. In subsection 32~ several dif- 
ferent ways of formulating the problem of motion with a free surface will be 
described. 

CX) Kinematical theorems-mass tralzs~&t -e+t&rgy integrals. The first theorem, 
due to M. S. LONGUET-HIGGINS (1953), is independent of the presence of a free 
surface or of the nature of the time dependence. Let f(z) = @+i K describe a 
space-periodic motion, i.e. f (Z + n. A) = f (2). The definition of 9 will be normalized 
so that 

s”@(x, y, t) dx =o. (32.4) 
0 

Note that if this condition holds for one value of y, it holds for all since 
a a a 

.$J@dx +q dx = -j- !I?% dx = - y(n, y, t) + y(o> Y> t) = 0. 

0 0 0 

In Eq. (2.10’) we shall write 

P PO -=-- 
e e 

gy+Pd 
e ' 

$Lqt)-cQ-~(U2+v2). (32.2) 

In the following we define an average by 

F(y, t) = ; j&x, y, t) dx. 
0 

(32.3) 

-- 
Theorem. In a non-uniform space-periodic motion d, ~2, -& each decrease 

with increasing depth, provided either QY (x, - h, t) = 0 or lim GY = 0. y-b-m 
This may be proved as follows. Consider first q2 = u2 + ~2. Then 

0 0 

(32.4) 

See separate file errata.pdf
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By a similar computation it follows that 

(32.5) 

since we have assumed that Qz is not constant. It is evident from (32.4) that, 
if the fluid is bounded below by y = - h, then 

if it is infinitely deep, it is an assumed boundary condition that c$-+o as y-f- CO 
and hence 

$qZ-+O as y-t-co. (32J! 

In either case it then follows from (32.5) that aq2/ay is an increasing function 
of y and hence 

+0, (32.8) 

with equality occurring only for y = - k. In fact, even more can be concluded, 
for (32.5) is like p itself with @ replaced by 2@%. Hence, by repeating the above 
reasoning one may establish that 

g&O, 
aafi-1 T> o 

ayzn-14 - ' ?z=1,2, . . . . (32.9) 

Next consider UT- z A similar computation shows that 

Hence 
G-7= c(t) =qly=+r--oo. 

It follows from (32.8) that 

(32.40) 

iF=8[iy+C], p=*[& C], -j&g&4(t) (32.44) 

are each increasing functions of y, i.e., they decrease with increasing depth. 
For infinite depth LONGUET-HIGGINS shows further that, if axes are chosen such 
that zt = 0 at y = - co, then the quantites 1 u I,] w 1 and 1 fi, 1 all decrease exponen- 
tially to zero. He had shown earlier (1950) for exact waves (we shall not carry 
through the proof) that 

&+?LjL& Wf4 
Hence it follows that 

1 as- 
&4-o=~jg12. (32.13) 

For purely progressive waves this quantity vanishes, but we recall that for stand- 
ing waves we found earlier a constant pressure fluctuation of double the wave 
frequency [see (27.62) and (27.65)] if second-order terms were retained. 

Mass transport. In Sect. 27 [see (27.39) and (27.41)] it was shown that a 
forward drift, called “mass transport “, occurred in progressive waves if second- 
order terms were taken into account. It was shown by RAYLEIGH (1876) in 
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a proof valid only for infinitely deep fluid that mass transport must always occur. 
The proof is independent of the dynamical free-surface condition. LEVI-CIVITA 
(1912) and later URSELL (1953) developed methods of analysis to include both 
finite depth and nonperiodic waves; essentially URSELL’S analysis has also been 
given by NEKRASOV (1951) for infinite depth. The analysis given below is due to 
LONGUET-HIGGINS (1953) and is similar to that used in the preceding theorem. 
We note that STARR (1945) has also given an instructive and perspicuous deriva- 
tion of RAYLEIGH’S theorem for infinite depth. 

Take the wave as moving to the left with velocity c (in the sense of Sect. 7) 
and impose a uniform velocity c in the opposite direction, so that the motion 
is reduced to a steady one, generally in the positive x-direction in the sense 
that u)E>O. We may then write the complex potential in the form 

f(z)=@+iY=cZ+p)+iy, (32.14) 
where Re f’ > E > 0 and 

@(x + fi 1, Y) = 92 c a+ @(x, Y) > y(x+fih Y) =yv(% Y). (32.15) 

We take @=o at a crest and assume !P= 0 as the free-surface streamline and 
Y =- Q as the bottom streamline if the depth is finite. One may invert the 
relation f = f (2) and obtain z = z (f). Then, since &= 0, 

z’(!)=+y=~+@; @“+*=+(U+i’U) =x@+iy,. (32.16) 

Denote by T(Y) the time required for a given particle to progress one wavelength 
along a streamline Y =const. In the original wave motion, the time elapsed be- 
tween the passage of two successive crests over a given point is A/c. If T>illc, 
the particle is being transported with the wave and it will be reasonable to call 

O(Y)=+& 62.17) 

the mass transport in the direction of wave motion. The following theorem is 
true. 

Theorem. Both T and U decrease with increasing depth, and, with the assumed 
definition of c, U> O. 

The theorem may be proved by the following computation : 

s (2) 
T(y) = J+pai ca 

CL 

4 adj d@= ij. (xii+ y%)d@= j- (G+ 4) d@, (32.48) 
0 0 0 0 

. 
T’(Y) = 4 7x0 xGp d CD, 

0 

T”(Y) = 4 j?(x&, + x&v) d@. 
0 

(32.20) 

The details of the computation are almost identical with those used in deriving 
(32.4) and (32.5). Since 

~‘p=-y~=-$@~=o on K=-Q, 

it follows from (32.19) that T’(- Q) =O. Then, since T”(Y)>0 unless the flow 
is uniform, it follows that 

T’(Y) 2 0, (32.21) 

See separate file errata.pdf
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with equality holding only for 1v = - Q. As in the earlier theorem, the computa- 
tions can be extended to yield 

n2+Q (Y) > 0) T’““-“(Y) 2 0. 02.24 

It now follows immediately from (32.17) that 

U’(Y) B 0, 0225) 

with the equality holding only for the bottom streamline. If the fluid is infinitely 
deep, then U’>O for all Y. To complete the proof we must show that U>O. 
If the fluid is infinitely deep, it is evident that 

lim T(P) = 1. 
lp+-cc (32.24) 

Hence lim U =0 as Y-t- CO and the conclusion follows from U’>O. If the depth 
is finite, we compute 

T(-Q)=J?xbd@>& &,dcD2=&P=f; 
0 I 1 (32.25) 

0 

here use has been made of the Schwarz-Bunyakovskii inequality. (We have 
written > rather than 2, for the equal sign will hold only in the trivial case of 
a uniform flow.) It now follows that U( - Q) >O and hence that 

U(Y) > 0 (32.26) 

since U’2 O. This completes the proof of the theorem. 
The method of analysis can be extended to prove an analogous theorem for 

nonperiodic steady motions which approach uniform flows as x-tf 00, in par- 
ticular, to the solitary wave. 

Momentum and energy integrals. We close this section with several 
momentum and energy integrals, most of which have been found by LEVI-CIVITA 
(1912, 1921), STARR (1947a, b, 1948) and STARR and PLATZMAN (1948). 

Let us again take the wave as moving to the left without change of form and 
impose an opposite velocity c which brings the profile to rest (or, equivalently, 
consider the motion relative to a coordinate system moving with the wave). 
Let the velocity potential be as in (32.14). Consider the area bounded by two 
streamlines Y = Y1 and Y = U,, say y = q1 (x) and y = y12 (x) and two vertical lines 
a wavelength il apart. To this area apply the theorem 

This yields 
(32.27) 

since Gap,=0 on the streamlines. Moreover, since ;(%+A, y) =cJ,+@(x, y) 
Q%‘,(x+~>Y)=@~(%.Y)=c+ u and vi (x + 1) =v;(x), the right-hand side of 
(32.28) may be written as 

r/&o) sac4 
C2~~~2(~o)-~1(XO)1+~~.rpl,(~o~~)Jy=c2~['i2(~)-ri~(~)1+~~~~~~dy. (32.29) 

aL(%l) 
Expanding (c +,u)2 and rearranging give 

Ilaw 
~~(U2+~2)d~+2c~~~d~+c2~~d~=c”/Z[y,(x)-g,(x)]+c~~,udy. (32.30) 

1 
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If one now applies the operator A-l;. . . dx to (32.30), one obtains 
0 

or, after multiplying by QQ and rearranging, 

SSQe(u”+w2)do=gcSS--eddo, (32.34 
i.e., the kinetic energy per wavelength between two streamlines equals Qc times 
the momentum in the direction of the wave (here to the left). 

Next let us write the integral (2.10’) in the form 

i, [(c + uJ2 + v”] + @g Y + B = Q @ c,2, (32.33) 

the form of the constant having been chosen for later convenience. Write the 
terms p + ~g y as follows: 

(32.34) 

=,g [YM + @kTY)l - v2 + 6 (Y4. 

Here we have used the second equation of (2.6). We may now write (32.33) as 
follows 

~@(112-~2~+,~~+~~Y(P+e~Y)1+~(~~)=~~(c~-~2). (32.35) 

Next let us integrate Eq. (32.35) over the same area as is described in the preced- 
ing paragraph. First consider D(y w)/D t. Since the motion is steady in the selected 
coordinate system, 

where the last equality follows from the continuity equation. Hence 

jj-,4(yw)do=+yw(u+c,w).nds=+yw@Bds=o (32.36) 

since @%= 0 on the streamline boundaries and the integrals over the vertical bound- 
aries cancel from periodicity. The integrated equation then becomes 

ssto(U”-w2)db+CSSO~do+~~iri2(X) [P(%V2) +egrl21 - 

1 

(32.37) 
-r;(MHwJ +es~~1)"Ix=~e(c~--2)SSd~'. 

If one eliminates the second integral by means of (32.32), one obtains 

SS~e~“d~+3SS~e w2 do - hI2 [P (XJ 172) + e &7 7721 - 

-n[#(x,rl~) +esy,;}dx=~e(C”-c~)SSd~. J 
(32.38) 

Eq. (32.38) has a simpler aspect if the two streamlines are taken as the free 
surface q(x) and the bottom y = - Jz. 
becomes 

Then fi (x, 7 (A$) = 0 and the third integral 

6:ogYI~(X)dX+h~[piX.-h)--ggldr. 
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Moreover, 

/[P (x, - h) - @g h] ax = 0 (32.39) 

if the x-axis is taken at the mean water level. This follows from the following 
sequence of equations, similar to those used in (32.36) : 

1 

j-U+> - h) - eghldx =s-$ [I)&, Y) + eg YI~Q - 
0 

- SS[(zr+c)~v+w~v]do=-SS[~“(“+c) +&v2]do’ (32*40) 

= 
tb w(u+c,v).ndcr=- tb vQfidda=o. 

Eq. (32.39) now allows us to give a simple physical interpretation of the constant c1 
in (32.33). For if (32.33) is integrated along y =-Jz, and account is taken of 
(32.39), one finds 

+/(~+c)~dx=c:>c2, (32.41) 
0 

i.e., ci is the mean square velocity of fluid along the bottom. The inequality 
follows easily from 

/u(x,-h)dx=~q&.-h)dx=q(i,-h)+o,-h)=o. 

If the fluid is infinitely deep, ~-to as Y-+-CO, and (32.41) reauces to 

c2=cf. (32.43) 

kinetic If, following (15.27), we let Y&, Y%,,, 9&,, Va,,, A& denote the average 
energy, the contributions to this due to the’ x and y velocity components, the 
potential energy, and the momentum in the direction of wave motion, respectively, 
then (32.32) and (32.88) may be expressed as follows: 

(32.42) 

25G = C.4”, ~,,+s~~,,=2~“--8e(c~-c2)h, W44) 

where the last term of the second equation is zero for h = 00. The first equation 
is essentially due to LEVI-CIVITA (1912, 1921), the second to STARR (194713). 

We note another simple consequence of (32.41), clue to LEVI-CIVITA (1924). 
Let us integrate (32.33) along the free surface for a wavelength and divide by 
9~1. Then, remembering our choice of x-axis as the mean water level, we find 

+ j[[c +u)” + w”] dx = cf. (32.45) 
0 

On the other hand, if we compute the velocity at the intersection of the mean 
water level and the profile, we also find 

(c + 24)2 + w21y,o = cl”. (32.46) 

Hence the absolute value of the velocity at the mean water level equals the root- 
mean-square velocity along the surface profile or along the bottom, or, indeed, 
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along any streamline, for in the reasoning in (32.40) we could have substituted 
any streamline y = ql (x) for y = - F, and obtained 

~V(wd4 -esdw~=0~ (32.47) 

STARR and PLATZMAN (1948) have used the relations above to derive some 
general relations concerning the flow of energy in a periodic wave. We recall 
that the average flux of energy in the direction of wave motion is given by [cf. 
Sect. 8 and Eqs. (15.23) and (15.27)] 

~~,=~~xj(~cpl:(x,y)dy=2~~,,. (32.48) 
0 -h 

It follows from the second formula in (32.44) that 

29iw = ~~~,-2~~"+~@(C~-c~)~. 

Hence, with gag, = &+ Va,, we obtain from (32.48) 

(32.49) 

(32.50) 

This should be compared with the result derived in Sect. 15 for infinitesimal 
waves with neglect of surface tension [cf. (15.25) and (15.26)], namely, .3z$, = *&,, . 
Eq. (32.50) is consistent with this, for to the order of approximation involved, 
r.“= Va, and cf = 3. However, for waves of finite height it was shown in Sect. 27~ 
[cf. Eqs. (27.42), (27.43)] that to the second order of approximation YaV>KV. 
PLATZMAN (1947) has verified that this remains true when 4th-order terms are 
kept. 

Several of the above results have analogues for steady motion of nonperiodic 
03 

waves, provided that q(x)+0 as x-t& 00 in such a way that J 17 dx is finite. 

Under such circumstances cf =c2 and the following results ma;mbe established 
[the notation is that of (15.31) with obvious extensions] : 

4ota, = c 77 dx = c 4ota1> 

9- (32.51) 
x total --&OM = %tal> 

9- xtota1 - q total + 2%k31 + (s h - 4 ~t,ta, = 0. I 

For details of the proof one may refer to STARR (194713). From the last two equa- 
tions follows 

c2 = g h + 3 %ta*/4tota1> g k * (32.52) 

We note that the second equation of (32.51) is a special case of a more general 
one applying to any steady motion: 

T$(x) - q,(x) - V(x) = const (32.53) 

where the constant is zero under the conditions of (32.5 1). The proof is analogous 
to that of (8.6). Here 

VW 
6(x) =JQQ~“(x, y)dy, etc. 

Handbuch der Physik, Bd. IX. 

-h 

46 
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/5’) Waves in heterogeneous flzcids. The first two theorems proved below are 
also true for homogeneous fluids and were first proved for this case. The last 
theorems deal specifically with heterogeneous fluids. In the extended form they 
are all due to DUBREIL-JACOTIN (1932). 

A flow will be called barotropic if both the pressure and density are constant 
along streamlines. We first derive the energy integral for such flows. The Eqs. (2.6) 
may be written in the following form in two dimensions: 

Since p is assumed constant on a streamline, upx+w~,=O; it follows from (32.27) 
and the definition of E that 

In particular, if the flow is steady, E is also constant along a streamline. For 
steady flow it is a consequence of the incompressibility condition that Q is also 
constant along a stream-line. 

The following theorem was proved by BURNSIDE (1915) for a homogeneous 
fluid. He gives two proofs, of which the second can be carried over to the present 
more general situation with no change. It will perhaps give more substance to 
the theorem if we remark that GERSTNER’S wave (see subsection 34/Q, which is 
not irrotational, satisfies the other conditions of the theorem. 

Theorem. The only steady two-dimensional irrotational motion of a fluid 
subject to gravity for which all streamlines are also lines of constant pressure is 
a uniform flow. 

Let the streamlines be given by y (x, y) = const. Since, from the remark follow- 
ing (32.55), E =const along a streamline, we may write 

Q(Y:+Y;) SgY =wt)* (32.56) 

[BURNSIDE shows that one may generalize (32.56) by replacing gy by a function 
g(y).] Since the motion is irrotational, d y =O and hence also 

~l%(y;+y~)=o. 
But then 

Jlog[E(ly) -gyl=o, 

which yields after some computation 

wE’(y)y,=W-gyy) [E’2- (E-gy)E”l+g2. 

We write this in the form 
wyb Y) =G(Y, Y). 

It then follows from (32.56) and (32.58) that 

yzx= E’- GG,, YYY = GVYY + GY 
or 

E’(Y) + G, (Y, Y) = 0. 

(32.57) 

(32.58) 
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But then 
yy = - y E’(y) + const 

and y is a function of y only. Hence, since A y =yyy=o, y,, is a constant and the 
flow is uniform. 

The next theorem was first proved by LEVI-CIVITA (1925) for homogeneous 
fluids. FENCHEL (1931) showed that his hypotheses could be weakened and 
DUBREIL- JACOTIN (1932) extended FENCHEL’S proof to heterogeneous fluids. 
The gist of the theorem is that if the surface profile moves without change of 
form, then the whole velocity field is steady in a coordinate system moving 
with the surface. The theorem will be formulated in the moving coordinate 
system. 

Theorem. Let a possibly heterogeneous fluid, bounded below by a horizontal 
plane y =-h, be flowing irrotationally in the x-direction with discharge rate 
Q (t) and with a fixed surface profile y =q(x). If v and u satisfy the conditions 

-h<b,<q<b,, U>E>O, (32.59) 

then the velocity potential f(z) is independent of t. 
First we derive a boundary condition at the free surface. From the,condition 

of constant pressure and the assumption that the surface profile is an invariant 
streamline it follows that 

zl$+vLo 
aY 

on y=O. 

It then follows as-in (32.55) that 

E&p+gLo on y =O. (3 2.60) 

However, this conclusion holds now only on this one streamline. 
The complex potential f (.z, t) = pl + i y maps the region of the z-plane occupied 

by fluid onto the strip - Q(t) 5~50, where the free surface corresponds to 
y=O, the bottom to y=-Q and x=-&cc to ,=fm. Let F(z) =@+iY be 
the mapping, unique up to an additive real constant, of the fluid region onto 
the strip - 15 !Ps 0 with x = f co corresponding to @ = f 03. Then 

f hi 4 = Q (4 W (32.61) 

evidently satisfies the requirements for f (2, t) and, in fact, is determined uniquely, 
up to the added constant in F, by Q(t) and “/I(X). Now substitute pl (x, y, t) = 
Q(t) @(x, y) into (32.60) : 

g Q@$+ QQ'[@Z + @;I+ QVL @:+ 2@&i Qy + Qy, @;I =o, (32.62) 

which we may write in the form 

Q’+AQ+B=o on y/=0 (32.63) 

where A and B are independent of t. Division by @z + @i is possible since (32.59) 
implies that this does not vanish. Note also that 

and that both A and B may be considered as functions of @. Consider two cases: 
(a) A = const, (b) A + const. (a) In this case, since B is independent of t and 

46* 
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Q’+A Q is independent of @, it follows from (32.63) that both equal constants. 
It now follows from (32.64) that, unless this constant is zero, the profile q(x) 
will be unbounded and the first part of (32.59) will be contradicted. Hence, in 
case (a) 17 = const and the mapping F must be of the form F = a.z + b, a and b 
real. It then follows that A =0 and hence Q’=O, i.e. the flow is uniform. (b) Let 
A,, A, be two different values of A, A,=/=AA,. Write Eq. (32.63) for each value 
and subtract. This vields 

But then Q is evidently independent of t. Hence also f (z, t) = QF(z) is also in- 
dependent of t. This completes the proof. 

The next theorem, due to DUBREIL- JACOTIN (1932), specifically requires that 
the fluid be heterogeneous. 

Theorem. Suppose the motion of an incompressible heterogeneous fluid to 
be irrotational, the free surface to move without change of form, and that, in 
a coordinate system moving with the surface, conditions (32.59) are satisfied. 
Then not only is the velocity field steady, but also E, fi and e are constant along 
the streamlines. 

It follows from the preceding theorem that the velocity is steady, hence that 
E = E(x, y) . However, we may still conceivably have p = p (x, y, t), e = ,CJ (x, y, t) . 
The Eqs. (32.54) may now be written in the form 

l&5 8E lap aE --- 
Q ax=axj 

---=-. 
e aY aY (32.66) 

Elimination of first e, then p between these two equations yields 

We assume that the corresponding functional relations may be solved and write 

where, from (32.66) 
P=P(E,t), e=e(E>t)> 

QZA2 
aE * 

(32.67) 

t32.68) 

From the equation expressing incompressibility, namely, 

=e --=- 
Dt 

“,; +24d,“++o, 

follows 

~+~(u~+~~)=~+~~=o, (32.69) 

We shall assume ae/aE + 0 everywhere, and may thus write 

et@, 4 a (-6 Y) = 
a (xr Y) &?E (E, t) 

(32.70) 

Since the left-hand side is independent of t, it follows from the form of the right- 
hand side that we may set both sides equal to k(E), i.e. 

$f- + k(E)+; =o. (32.72) 

Ronald W. Yeung
"Surface Waves Online" - Copyright 2002, Regents of the University of California.  All Rights Reserved



Sect. 32. Some general theorems. 725 

Let us suppose k(E) *O, e.g. K (E,) + 0. Then @ must be a function of the form 

(32.72) 

in some neighborhood of El. If k(E) vanishes for some values of E, let E, be 
the first zero larger than E,. Then from (32.71) and (32.72) 

pL(E,t) =$(t-/G)+O as E+E,. (32J3) 

But (32.73) can hold for all t only if e’=O, i.e. if e =const, which is contrary to 
the assumed heterogeneity. Moreover, at least one such zero of k exists, for we 
already know from (32.60) that E is constant along the free surface, so that in 
steady motion the Jacobian in (32.70) vanishes for y =O. Hence k(E) =0 for 
the corresponding value of E. We must conclude that k(E) = 0. This implies, 
from (32.70) that E =E(v) and e =e(E). From (32.68) and the condition #,=O 
on the free surface, it follows that also 9 =$ (E). Hence $, e and E are all con- 
stant on streamlines. 

The last in this complex of theorems is also due to DUBREIL- JACOTIN (1932). 
Theorem. There cannot exist irrotational waves in a heterogeneous fluid such 

that the profile is propagated without change of form. 
This follows immediately from the first and last theorems proved above, 

and is, of course, subject to condition (32.59). This striking result is all the more 
so in view of the fact that GERSTNER’S wave (subsection 34/3) does provide a 
steadily propagating wave, even in a heterogeneous fluid. The theorem also casts 
some doubt upon the significance of the linearized theory of irrotational wave 
motion in a heterogeneous fluid as developed, for example, in LAMB (1932, 
$29 5). Such a wave evidently cannot be considered as a first approximation 
to an exact steady solution. 

y) Some trawformatiolzs of the boumdary-value firoblem. By means of intro- 
duction of new variables or other devices, it is possible to formulate the boundary- 
value problem for exact solutions in a variety of ways. Several such formulations 
will be considered in subsection 34~ on inverse methods. Here we give a few 
which seem to be of general interest. 

Inversion of f (z). One elementary but important transformation has already 
been introduced in subsection 32~ in the discussion of mass transport. This is 
the inversion of the velocity potential f(z) when [/‘I vanishes nowhere within 
the fluid, and treatment of f as the independent variable. This has the advantage 
that under certain circumstances the domain of definition of the independent 
variable can be given exactly; when z is the independent variable, the domain 
of definition is one of the unknowns of the problem. For example, if the motion 
is reducible to a steady flow with discharge rate Q, one may take the surface 
profile to correspond to p = 0 and the bottom streamline to correspond to y = - Q. 
Hence the domain of definition of z(f) is the strip 0 2 y 2 - Q ; if the fluid is in- 
finitely deep, the domain is the half-plane ~5.0. Whenever f can be taken as 
the independent variable, then one can also express w = f’ as a function of f. 
It has been established independently by GERBER (1951) and LEWY (1952a) 
that the equation describing the free surface, z =Z (q), is an analytic function 
of Q) at all points for which w + 0. 

See separate file errata.pdf
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STOKES' “secondmethod”. In the introduction to Sect. 27 it was mentioned 
that STOKES (1880), in a supplement to an earlier paper in his collected works, 
developed a method for approximating exact periodic waves which is different 
from the straightforward generalization of infinitesimal-wave theory expounded 
in that section. This method is based upon use of f as the independent variable 
and expansion of z as a Fourier series in f: 

cz = f +i$F a,epinanflcn 

n=o 

or 

a, sin 1z $ (f + i Q) 

(32.74) 

(32.75) 

for infinite and finite depth respectively; the a, may be taken to be real. Here y 
is taken as in the preceding paragraph. The coefficients a, are to be determined 
from the condition that the pressure be constant on the surface, i.e. from 

q2+2gy =c for y =O. (32.76) 

If the mean water level is taken at y =O and the fluid is infinitely deep, then 
C = 3; we shall consider only this case here. Then Eq. (32.76) may be expressed as 

[c2-2gy) 12’12=1. 

Substitution of (32.74) in (32.77) yields 

62.77) 

( 
1 -$za,cos 

2nnp, 

n=0 cl b 

x 
( 
I+ 2zna,cosy + jJ lzma,a,cos(n-m)T)=l. 

(32.78) 

n=l ~,~=l 

After multiplying the two factors and reducing the cosine products to cosines 
of sums and differences, the resulting expression may be put into the form 

where the b,‘s and c,‘s are forms of the third degree in the a,‘s. The coefficients 
of the individual cosine terms must then be equated to zero. This results in an 
infinite sequence of equations, each involving all the a,‘s and g;l/3tc2. In order to 
proceed further, one must devise some method for approximate determination 
of the a,‘s. STOKES' procedure was to assume that each a, could be expanded 
in a power series in some parameter, the initial term in the series having the power 
n. This allows one to carry through a step-by-step improvement in the approxima- 
tion of the a,‘s by including successively higher powers of the parameter. We shall 
not pursue the matter further, but remark that the most systematic arrangement 
of such computations seems to have been devised by SRETENSKII (1952). 

LEVI-CIVITA'S differential-difference equation. The following theorem, 
due to LEVI-CIVITA (1907), reduces determination of w(f) for steady flow over 
a horizontal bottom to solution of a differential-difference equation. 
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Theorem. The complex velocity ze, =G - iv of an irrotational gravity flow 
with constant discharge rate Q and with tik e>O must satisfy the differential- 
difference equation 

+ [w (f+i Q) w (f - i Q)] - i g [uci;Td, - Lr--] = o. w(f-zQ) 
(32.80) 

Conversely, any function w(f) satisfying (~2.80) which is regular in the strip 
- 2 QI; Im f 5 0, finite at 00, real on Im f =- Q and has U> is> o represents 
such a flow. 

In order to derive (32.80), we note first that the functions w(f) and z(f) +ih 
both have vanishing real parts for w =- Q and consequently can be extended 
by reflection to the strip - Q 2 w 2 - 2 Q: 

4-2iQ) =w(f), z(f-ziQ)+ih=3)-ii. (32.84) 

The free-surface condition may be expressed by the equation 

3$Ww+2g3+=0 for y=O, 

or, by making use of the extended definitions of w and Z, by 

~{z4&+~-22iQ)--g[z(~)-z(~-2iQ)]}=o. We3) 

Consider the function 

H(f)=w(f+iQ)w(f--Q)--ig[z(f+iQ)--(f--Q)]. (32.84) 

Evidently, H is defined and is regular on the line w =- i Q and thus in some 
neighborhood of this line. From (32.83) it follows that H’(p, - iQ) =O, hence 
that H’(f) 3 0 in its region of definition. Eq. (32.80) follows from the fact that 
z’(f fi Q) = I./w (f fi Q). For proof of the converse we refer to LEVI-CIVITA’S 
paper. LEVI-CIVITA also gives a special form of (32.80) appropriate to a space- 
periodic flow. CISOTTI (1919) generalized the preceding theorem to include a 
variable discharge rate. The Eq. (32.80) may be considered to contain the 
Eq. (22.30), when in that equation f (z, t) = f (Z - ct), in the sense that lineariza- 
tion of (32.80) by assuming 

yields (22.30). 
w =c(l few,+.*.) 

RUDZKI’S transformation. The following transformation was apparently 
first introduced by RUDZKI (1898). It has later been used by many others in 
the investigation of exact water waves. The validity of the reformulated boundary 
condition is not limited to periodic waves. However, it is assumed that a coordinate 
system has been selected with respect to which the flow is steady. It is again 
assumed that u > E > 0. Let 8 be the angle between the velocity vector Z = u + iv 
and the positive x-axis. Then one may write 

w=U-~v=qe-i~=ce-iw (32.85) 
where 

co =6 +iz, q =ce”. (32.86) 
Here c is some typical velocity, say the wave velocity as defined in Sect. 7. We 
consider w as a function of f and let w = 0 correspond to the free surface. The 
free-surface condition may then be expressed by 

g+$ +qjj- =0 for y=O. (32.87) 
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But [see (32.16)] 

and, from (32.86), 

ax _ 
a9 

’ ap = A-sin6 
4a ay 4 

a4 a7 -=ce z at 
a9 

z =4x. 

. Hence (32.87) becomes 

ar 
a9 

= _ g -if sin 6 = _ .A.- c3 e-3dsin6 for y =O, 

OS, since az/ay =- asjay from the Cauchy-Riemann equations, 

w*w 

!A? = &e-ST sin@ 
av ~3 for y=O. (32.89) 

It one can find a function w (f) regular in the strip 02 ~2 -Q, with 18/< Qn--- e’, 
and with its real and imaginary parts satisfying (32.88) or (32.89) on y = 0, one 

~i~~~~~~~ 

Fig. 50. will be assumed that the sur- 
face is periodic with period 

1, symmetric about a crest and that the fluid is infinitely deep and 
lim ze, = c. Let the origin in the z-plane be taken at a crest, y = 0 be the free 

i,‘,FaTe, and assume zd> E> 0. In addition to the x- and f-planes, we introduce a 
c-plane, 

i;=t fiq =,e+, (32.90) 
related to the f-plane through 

2ni 
(32.91) 

With a cut along the negative &axis there is a one-to-one correspondence between 
the various domains CA0 BD shown in Fig. 50. 

The relation between the x- and C-planes will be determined by 

where /z(c) is regular in the disc and is related to ze, by 

(32.93) 

The form of h shown in (32.92) follows from the assumed properties of the motion. 
Since e = 1 on the free surface, the condition of constant pressure may be expressed 
bv 

(32.94) 

See separate file errata.pdf
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But 

It then follows from (32.93) and (32.95) that 

d .- --y-Lp, = La Im Jf, (eiY) . 
dy h (esr) h (e-“Y) (32.96) 

In this formulation of the problem one seeks a function h(c), regular in the disc 
I<12 1, real on the real axis, b(0) = 1, and satisfying (32.96). From such a func- 
tion one can easily construct a periodic gravity flow with free surface. 

NEKRASOV’S integral equation. NEKRASOV also considers the function o 
of (32.92), but as a function of 5. Let us start from (32.88) and compute 

az at a9 671 
ay a9 ay 

=- $e-3Tsin#.*=Gfe-3T sin6 for @=I. (32.97) 

One may formally integrate this equation and obtain 

(32.98) 

where l,l,u is the integration constant; ,u is related to the velocity at the crest, 
q,=z(l) =+(I), by 

pu=2- gac 
23% TjpO* (32.99) 

Substitution of (32.98) into (32.99) yields the following equation for the relation 
between z and 6 on the boundary: 

dt(y) 1 iusin@@) 
dy 3 1+p[jsin8(cx)dcc 

0 

(32.100) 

[it follows from (32.98) that the denominator does not vanish]. It is known from 
the theory of functions of a complex variable (see, e.g., CARATH~ODORY, Funk- 
tionentheorie, Bd. 1, 3 147-149, Birkhauser, Easel, 1950) that, if a function 
is regular within and on a closed Jordan curve, it is determined up to an additive 
constant by giving either its real or imaginary part on the boundary. In par- 
ticular, in the case at hand we may express the value of 6 on the boundary 
I[ 1 = 1 in terms of -c on the boundary: 

6 (y) = const - & l?Vj’; (/3) cot + (y - /3) da, 
0 

(32.101) 

where the constant =i61,,,=0. An integration by parts gives 

From the assumed symmetry about a crest follows 
(32.102) may be expressed as follows: 

z’(-p) =-z’(p), so that 

(32.102) 
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Substitution of (32.100) into (32.103) yields NEKRASOV’S nonlinear integral equa- 
tion for 8 (y) : 

2n 6(Y) =& s psin8(P) B (32.104) 

0 
l+pJsin@(x) DDE 

If one can find 6 satisfying (32.104), one can then reconstruct I and hence 
the whole flow. 

NEKRASOV (1928, 1951) carried through a similar analysis when the depth is 
finite. We shall only sketch it. In Fig. 50 suppose that y =-h,, represents the 
bottom (h, is not the mean depth) and y = - Q the corresponding streamline. 
In the c-plane this maps into a circle of radius eo< 1, where 

2nQ 
e. = e- Cm. (32.105) 

In (32.92) F, ([) becomes a Laurent series. The integral equation for 8 (y) remains 
the same in form as (32.104,), but the kernel function log I.. .I is now replaced by 

zGtanhssin?zysin?z/3. 
n=1 

(32.106) 

MOISEEV (195i’b) has further generalized NEKRASOV’S equation so as to allow a 
wavy bottom. 

The solution 6(y) of (32.104) will, of course, depend upon the parameter ,u, 
except for the trivial solution 6~ o corresponding to a uniform flow. It is possible , 
to show that not all ,u’s are allowable. Let 

M=maxlG(y)I. 

It then follows from (32.102) that 

(32.107) 

hence that 

From this follows 

osM<j- ,u sin M 
3 I--npsiniiZ ’ (32.109) 

VILLAT’S integral equation. Even though we shall not consider its con- 
tents in any detail, it would be improper not to mention an important paper of 
VILLAT (1915). VILLAT wished to find the steady motion of a fluid in a canal 
of given bottom profile and also with a given top profile over the part of the fluid 
upstream of some point. Downstream of this point the top profile is one of con- 
stant pressure. The boundary condition on the free surface, (32.89), is modified 
by introduction of new variables, and a pair of integral equations, one of them 
nonlinear, is derived. The method is also applicable if the upstream “cover” 
is absent and, in fact, becomes a little simpler. The chief use made of the procedure 
by VILLAT is as an inverse method in which the free surface is given and the cor- 
responding bottom and cover determined. 

See separate file errata.pdf
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33. Waves of maximum amplitude. In the higher-order theory of infinitesimal 
waves one of the important effects of including higher-order terms was to make 
the profile more peaked at the crests and flatter in the troughs. The effect was 
the same for either steady progressive waves or standing waves. Since the peaked- 
ness increased with increase of the amplitude-to-wavelength ratio, it seems reason- 
able to conjecture that there is some bound to this ratio and that, if a wave of 
maximum amplitude-to-length ratio exists, it will be characterized by a corner 
or a cusp at the crest, at least if capillarity is neglected. It has never been proved 
that such waves exist. However, if one assumes their existence, it is possible to 
prove some necessary properties. This will be done below. 

Following an earlier erroneous investigation of RANKINE (1865), STOKES 
(1880, p. 225) showed that, if a corner occurs in steady motion, the angle included 
between the tangents must be 120”. MICHELL (1893) assumed that a periodic 
highest progressive wave exists and showed how to compute the coefficients 
of an associated series, but without proving convergence. HAVELOCK (1919) 
made MICHELL’S procedure the basis of a general method of approximation to 
periodic progressive waves, again with no proof of convergence. MICHELL’S 
wave was later investigated by a different procedure by NEKRASOV (1920). 
However, NEKRASOV did not carry his computations to the same degree of 
accuracy as MICHELL and HAVELOCK, so that the numerical results are discrepant. 
More recently YAMADA (1957) rediscovered NEKRASOV’S method and carried 
through the calculations with the necessary accuracy; the results are now in 
substantial agreement with those of HAVELOCK and MICHELL. 

PENNEY and PRICE (t952b), in their work on standing waves of finite ampli- 
tude, include an analysis intended to show that, if there exists a standing wave 
of maximum amplitude with a corner at the crest, then the angle must be 90”. 
G.I. TAYLOR (1953) has questioned the validity of the proof, and it appears, 
in fact, to be untenable. On the other hand, in the same paper TAYLOR reports 
the results of experiments which appear to confirm PENNY and PRICE’S predic- 
tion. In view of the present unsatisfactory state of the theory, it will not be 
further discussed here. 

STOKES’ theorem. We prove first STOKES’ theorem on the angle at a corner 
in steady flow. Let the corner be at the origin z = 0, the free surface be the stream- 
line y = 0, and M = 0 at the corner. Since z =0 is assumed to be a corner, it must 
also be a stagnation point and the constant-pressure condition on the surface 
may be taken in the form 

q2+2gyI(4 =o* (33.1) 

In the mapping from the z- to the f-plane the point z = 0 must be a branch point, 
so that in the neighborhood of z = 0 the complex velocity potential will take the 
form 

f =A?. (334 

If tc, <O is the angle between the right-hand tangent to the corner and OX, 
then near .z = 0 Eq. (33.1) can be written 

This can hold for all small Y only if 

12 =#. (33.3) 

It also follows that, if a- is the angle between the left-hand tangent and OX, 
then sin a- = sin GI, and CI- = - 180”-- CC+ so that the surface is symmetrical about 
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OX near the corner. If ~50 corresponds to the region occupied by fluid and if 
the branch of z =Y eic( with --$3t<a<i~~ is taken, then the complex velocity 
potential has the following form near z =o: 

f(z) = - 9@(- ixp 
=-~r/~r~[cos~(a-~2z)+isin~(or-~~)]. i 

(33.4) 

The streamline y = 0 has a corner at z = 0 with included angle 120”. In this case 
the flow is to the right. The inversion of (33.4) gives 

for f near 0. 
(33.5) 

a) Periodic wave of maximum height. Let us suppose that a periodic progressive 
wave of maximum amplitude-length ratio exists. We may take this as a steady 
flow with complex velocity potential f (2) = y +iy and with 

lim f’(z) = c. 
y-+-w (334 

Let the origin of the z-plane be at one of the crests, the surface profile correspond 
to y = 0, and the origin of the f-plane to that of the x-plane. Then the free surface 
condition may be taken in the form (33.1). 

MICHELL’S met hod. First we give MICHELL’S procedure for finding f’(x). 
As we have done earlier, we shall write 

f’(z) = qe-;“, z’(f) = +ei8. (33.7) 

From the assumed periodicity and symmetry, 8 is an odd periodic function of y 
with period cl for tl =O. From (33.7) follows 

(33 4 

For y = 0, &Y/a~ is an even periodic function of q~ with removable singularities 
at the crests; we expand it in a Fourier series: 

at? n -- = - 
ap, ~2 I 

2nrp a, + a, cos .__ CA +a2cosq+...]. (33 *9) 

The ak are real. Substitute (33.9) into (33.8) and rewrite it in the following way: 

i 
~~ogz’(f)--i~~a,e-~2nniicr] =--&logq-~~afisin~. (33.40) 

?S=O p=o ?S=l 

Now consider the function 

Z(f) =,dilogz’(f) -~~~a,e-“2”niicn, 
n=o 

(33.41) 

Z(f) is defined in the whole lower half-plane, is regular for y < 0, and, as y -+-- CO, 
Z(f)-+-i~~a~/c1. Moreover, from (33.10) 2 is also real on the real axis and hence 
may be extended by reflection to the upper half-plane. Z is then a function with 
only singularities on the real axis at the points q~ =ncil associated with the crests. 
The form of the singularity may be determined from (33.5). In fact, near f = o 

(33.14 
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