
Sect. 24. Gravity waves in the presence of surface tension. 

where 

637 

6 arc cos (4g T’)“/z+, if 4g T’S u{ 
0 

0 if 4gT’hu,4 
and 

One may easily show that 

As T’+o it is then evident that the integral involving k, vanishes and that 
(2e.31) reduces to (13.36). 

One may carry out an asymptotic investigation of (24.31), or of qz, along the 
lines of (13.38) and following. However, the analysis is considerably more com- 
plicated. The behavior of the wave pattern is roughly as follows. For zQ4g T’S 1, 
y%(R, cc, y) is 0 (R-l) for all a, and the disturbance is chiefly local. There is a 
constant c > 1 such that when 1< u$4g T’< c the wave pattern is a superposition 
of two sets of waves corresponding to the two roots k, and k,. Those correspond- 
ing to k, are capillary waves which precede the source and bend around it so that 
their crests eventually make an angle iz f6, with the x-axis. The gravity waves 
corresponding to k, behave similarly except that they follow the source and are 
longer. If u,4/4g T’> c, a second angle, say Gi, appears, where 6,<6,. There 
are now three sets of waves. Those associated with k, behave as described above. 
The gravity waves, however, consist of both transverse waves spanning the angle 
between 5 (Q3t. +&) and diverging waves which now lie in the wedge bounded 
by &n+6, and in+@, and its reflection. One will find a sketch in LAMB’S 
Hydrodynanzics (1932, p. 470) which was computed for the similar problem of a 
moving pressure point, the so-called “fishline problem”. A precise value for the 
constant c does not seem to be known. The free surface 17 may be computed from 

In spite of the general complexity of the asymptotic analysis of (24.31), it is 
relatively easy to find the asymptotic form of 7 directly ahead (CX = 0’) and directly 
behind (N = 1 SO’) : 

xekybcos(k2R-$z)+O(R-I); 
a = 180”: 

dx, ‘) = 8m + kf [ 1 + f ‘11 vg- j& T,;:;;3;fkP + sJl” x 1 1 
(24.33) 

xeklbcos(klR--$n)+O(R-1); 
here 

k,=k,(o)=~~~~[1-1;1-4T’g/~t], 
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JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 25 

and we assume u;> 4 T’g. One may see rather clearly the effect upon k, and ,$, 
c~ir;~rig T’ and zto by finding them as the intersection of the graphs of T’@+g 

Tiere is no special difficulty in finding source solutions for two-dimensional 
motion, and the asymptotic behavior is of course easier to determine. The 
related problem of a moving concentrated pressure is treated in LAMB (1932, 
$5 270,1). For this problem a paper by DEPRIMA and WV (1957) is particularly 
instructive, for they obtain the solution by first formulating the initial-value 
problem and then finding the limit as t-t 00. In addition, they analyze the form 
of the surface for large but finite values of t. 

25. Waves in a viscous fluid. If one abandons the assumption of a perfect 
fluid with irrotational motion, one loses at the same time many convenient and 
powerful mathematical tools from potential theory and the theory of functions 
of a complex variable. However, the simplifications introduced by the infinites- 
imal-wave approximation are sufficient to allow obtaining a number of solutions 
of interest, most of which have been known for many years. However, discovery 
of errors in early work has resulted in several recent papers. Furthermore, in 
connection with the theory of stability of interfaces the subject has again attracted 
attention; this work will be summarized in Sect. 26. One will find general ex- 
positions of many of the fundamental results in LAMB (1932, $5 348 to 351), 
and LEVICH (1952, pp. 467-497). LONGUET-HIGGINS (19jyb) gives a valuable 
discussion of the perturbation procedure and carries through certain second- 
order computations. 

Subject to the limitations of the approximation one can find solutions for 
periodic standing waves in fluid of both infinite and finite depth with a free 
surface, at the interface of two different fluids in which either may have a fixed 
horizontal plane as its other boundary, and at the interface and free surface 
when two different fluids are superposed, the upper one having a free surface. 
In all cases the presence of surface tension may be admitted. By making use 
of such solutions together with Fourier analysis one can find the solution to the 
Cauchy-Poisson initial-value problem [cf. SRETENSKII (1941)]. 

In general, in the investigation of standing waves one is particularly interested 
in two things, the effect of viscosity upon the relation between wave-length and 
frequency, and the rate of decay of amplitude. As an alternative to examining 
the rate of decay, one may instead assume that a space-and time-periodic pressure 
has been applied to the free surface and determine the rate of transfer of energy 
necessary to maintain a steady oscillation. 

One may still, as for perfect fluids, combine standing-wave solutions which 
are out of phase in order to form progressive waves. In a coordinate system 
moving with the waves the wave system will be stationary but the motion will 
not be steady for, as a result of viscosity, it will decay unless a periodic pressure 
distribution is moving with the waves and doing work upon the fluid. Fourier 
analysis may be used to obtain the fluid motion resulting from an arbitrary 
moving pressure distribution. Indeed, one need not restrict oneself to a pressure 
distribution but may also include a distribution of shearing stress at the free 
surface. If a pressure and shearing distribution of localized extent is moving 
over the fluid the dissipation of wave energy in viscosity will show up in a diminu- 
tion of amplitude, as one moves away from the pressure area, which is more rapid 
than for a perfect fluid. Such problems have been investigated by SRETENSKII 
(1941, 1957) and by WV and MESSICK (1958). The latter include the effect of 
surface tension and make a particularly thorough study of the behavior of the 
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Sect. 25. Waves in a viscous fluid. 639 

solution; they restrict themselves to two-dimensional motion. One should keep 
in mind that if the fluid is of finite depth it is no longer equivalent to formulate 
a problem in which the pressure distribution is fixed and the fluid moves with 
a constant mean velocity. 

Instead of attempting to construct a steady progressive-wave solution by 
means of a moving pressure distribution, one may instead assume that the pro- 
gressive waves have been somehow initiated and then study their rate of decay 
with distance from the wave-maker. (This is, of course, closely related to finding 
the decay with time of an initially given progressive wave.) Studies of this nature 
have been made by BIESEL (1949) and CARRY (1956), who investigated especially 
the effect of the bottom, by URSELL (1952), who investigated the effect of side 
walls for infinite depth, and by HUNT (1952), who combined the two. Dissipation 
with distance when no walls are present has been treated by DMITRIEV (1953) 
in connection with the theory of the wave-maker. A point of physical interest 
in these studies is the relative contribution to dissipation of shearing motion near 
the surface, near the bottom, near the walls, and within the fluid. CASE and 
PARKINSON (1957) have studied the damping of standing waves in a circular 
cylinder of finite depth, making use of the linearized equations of this section; 
their experimental data seem to confirm the theoretical predictions when the 
cylinder walls are sufficiently polished. KEULEGAN (1959) has made further 
measurements with rectangular basins; he finds a striking difference between 
fluids which wet the container walls and those which do not, but confirms the 
theory for large enough containers. 

The fluid motion resulting from a submerged stationary source of pulsing 
strength has been derived by DMITRIEV (1953) for two-dimensional motion and 
infinite depth. SRETENSKII (1957) has carried through the calculations for steady 
motion of a source in three dimensions. Unfortunately, the source function is 
not now as useful a tool for constructing solutions to special boundary-value 
problems as it is for perfect fluids. In particular, one can no longer satisfy the 
proper boundary condition on a steadily moving body by means of distributions 
of sources and sinks, as was possible in Sect. 208. On the other hand, distribu- 
tions of pulsating sources may still be used to satisfy the linearized boundary 
conditions on certain types of stationary oscillating bodies. Thus, if the motion 
is such that the linearized boundary condition specifies the velocity normal to 
the surface together with zero tangential velocity, then a source distribution 
may prove useful. For example, the wave-maker problems formulated in (19.26) 
and (19.31) may be treated in this fashion; DMITRIEV (1953) has done this. 

A fundamental assumption of the preceding remarks is that the motion is 
laminar. Such an assumption seems to be in harmony with the asumption of 
small motions which is made in deriving the equations of the present section. 
However, the possible occurrence of turbulent motion in progressive waves has 
been reported by DMITRIEV and BONCHKOVSKAYA (1953) who found experimental 
evidence for it near the surface, where the vorticity was highest. The photographs 
in Fig. 7 do not seem to show any evidence of it, but this may result from special 
circumstances of the experiments. BOWDEN (1950) has essayed a theory based 
on VON KARMAN'S similarity hypothesis; further references are given there. In 
the case of steady free-surface flow in a channel the importance of turbulence in 
modifying the mean-velocity profile is almost obvious. However, investigations 
have been confined to the necessary modifications of the shallow-water approxi- 
mation and will be discussed elsewhere. 

Finally, we note that much of the theory given below for a constant surface 
tension T can, in fact, be extended to a more general surface condition. This 
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640 JOHNV.WEHAUSEN and EDMUNDV.LAITONE: Surface Waves. Sect. 25. 

is indicated in LAMB (1932, $3 351) and carried out by DORRESTEIN (1951) 
in some detail for infinite depth. He includes compressibility of the surface film, 
hysteresis and a “surface viscosity”. An earlier investigation of the effect of 
generalized surface conditions is due to WIEGHARDT (1943). 

a) Linearized equations and simfile solutions. The linearized equations and 
boundary conditions have already been derived in Sect. 10. For a stratified fluid 
with interface at y =O the zeroth-order equations are given in (10.2), the first- 
order in (10.3). For a single fluid with free surface they are given in (10.4). It 
is customary and convenient to combine the zeroth- and first-order equations. 
Thus, if in (10.4) we let fl =@O)+efi(l) and v = EU(~), then the equations become 

%+v,+q=O 

vt= -tgrad(p+egy)+vdv, 

uy+vz=zf?Jy+v~=o for y=O,’ (25.1) 

P - egy - 2pvv,=- Thx+17,,)+5 for Y = 0, 

qt(%&t) =v(%O,&t). 

One may clearly combine (10.2) and (40.3) in the same way. In order to obtain 
the proper equations in a coordinate system moving to the right with velocity zto, 
one need only replace a/at by a/at - u,, a/ax. 

The standard procedure for solving the equations is to represent the motion 
as a potential flow plus a rotational flow and to determine the pressure from the 
potential part. Thus, let 

1) = v:(P) + VP) (25.2) 
where 

v@) = grad @ (25.3) 
and let 

fi=-e@t-QegY- (25.4) 

It then follows from the second equation in (25.1) that v(‘) must satisfy 

9 
(+9 = y d VP) . (25.5) 

The relation between v(P) and v@) is established through the boundary conditions. 
In the several examples treated below the motion is two-dimensional. However, 
there is no difficulty in principle and not much additional algebraic complexity 
in solving the analogous three-dimensional problems. The essential simplification 
in two dimensions is that the components of vcy) may be expressed, as a conse- 
quence of the continuity equation, in terms of a single function Y: 

&) = iz! 
ay ’ 

v(7) = - ay’ 
ax * 

It then follows easily from (25.5) that 

aY 
-==YLlY. at 

(25.6) 

(25.7) 

Standing waves-infinite depth. We shall try to find a solution to the 
equations which has a profile of the form 

q(x, t) = A(t) cos(mx+ cc). (25.8) 

See separate file errata.pdf
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Sect. 25. Waves in a viscous fluid. 641 

If such a solution exists, the nature of A(t) will, of course, be of especial interest. 
We take di and Y of the form 

@ =F(y, t) cos(mx+ cc), Y = G(y, t) sin (mx+ a). (25.9) 
Eq. (25.7) then implies that 

K= (cezY+ae-JY)eWtsin(mx+a), (25.10) 
where n 

k=WP+;. (25.11) 

Neither I nor co need be real. The form of @ is further determined by d @ =O 
and its relation to Yf through the third boundary condition in (25.1). It must be 

di = (a emy +be-mY)emtcos(mx+a). (25.12) 

If, as usual, we require the motion to remain bounded as y+ - co, we must 
take b =O. If 1 has a non-vanishing real part, which we assume for the present, 
we may without loss of generality take it to be positive. Hence one must have 
d=O. It follows from the third condition of (25.1) that 

Substitution in the formula for qt and integration with respect to t yield 

yI=c &ewfcos(mx +a) =Aoewtcos(mx +a). (25.14) 

Finally, one must substitute into the dynamical boundary condition in (25.1). 
There # is computed from (25.4) with y = 0. For future use we retain the external 
pressure distribution 5, which we take in the form 

5 =$,ewtcos(mx+ot), (25.15) 

where p0 may be complex. The boundary condition yields an equation relating 1 
and m: 

v2(~2+m2)~-4v2m3l+gm+T’m3=-m~~=- PO m---, (25.16) 
e Ao 

or, by making use of (25.11), an equation relating cc) and m: 

(cd +2m2+- 4v2m3 
0 3 PO ma+yfgmfT'm=-me. (25.17) 

Consider first Eq. (25.16) with $,=O and let 

,=4 
112’ 

K= gm+T’++ 
v2 1124 (25.18) 

Then (25.16) takes the dimensionless form 

An examination of this equation shows that two of its roots are always complex 
with negative real parts. These roots are discarded since the corresponding 
motion would not die out as y-f - co; in fact, we explicitly assumed earlier that 1 
has a positive real part. [Note that if we had made the other possible assumption, 
i.e., that 1 had a negative real part, the resulting equation corresponding to 
(25.16) would have had roots with positive real part, again to be discarded.] 

Handbuch der Physik, Bd. IX. 41 
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642 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. sect. 25. 

The other two roots have positive real part. Whether or not there is an imaginary 
part depends upon the value of K. There is a critical value KC= 0.581 such that 
if K< K, the two allowable solutions are both real. If K> K,, the solutions 
are complex conjugates. Let the two complex roots of positive real part be 
denoted by I&i&. Then one may establish that 1,/m> 0.683. When the two 
admissible roots are real, both of them lie between 0 and m. 

One may find the values of CL) associated with the two admissible roots from 
(25.11). If they are both real (K<K,), then c~=-v(m~-Z~)<o. In this case 
the motion is critically damped and the initial configuration of the surface gradually 
subsides. This occurs for a given m if v is large enough. On the other hand, no 
matter how small v is, it also occurs when m is large enough, i.e., for very small 
wavelength. If the two admissible roots are complex (K>K,), then 

and 

u)=--ym2 1-3+$*2i* 
( 1 

-.mqL~+~*-)tcos2~12 
I 

(25.19) 
erot= 2 e 

ma * 
One may establish that 1 -l~/m2+l~/m2>0.534, so that this motion consists of 
damped standing-wave oscillations. The larger m is, the more quickly it is damped. 

Because of the relative complexity of Eqs. (25.16) and (25.17), it is convenient 
and leads to more perspicuous results to find the relation between u) and m in 
the two limiting cases of small and large viscosity. First consider the case of 
small viscosity. If in (25.17) one lets v-+0, one regains the relation co*= 
--gm-TT’mS of (24.9); let a~=gm+T’m3. However, if one retains all terms 
of the first power in v, (25.17) becomes 

o.P+4vm2m +gm+ T’m3=0, (25.20) 
which has roots 

- 2m2v f l/4m4v2- gm- T’m3 M - 2m2v + i,go, (25.21) 

if 4m4 @<<gm+ T’m3. Hence the surface profile can be described by 

“/I = All e-2m*vt cos(oOt+r)cos(mx+a). (25.22) 

To this order of approximation, the frequency o,, is related to m as in a perfect 
fluid, but the amplitude is gradually damped. To have some idea of the orders 
of magnitude involved in the damping, one should consult the table on p. 645 
where the row t,, gives computations relevant to this. 

In order to find the behavior for large v, divide equation (25.17) by 4m4v2 
and expand the term [1 +a/m2v]g in a series. If one retains only terms in v-r 
and v-2, the resulting equation leads to 

302+ 4m2vo+ 2(gm+ T’co3) = 0. (25.23) 
The two solutions, both real and negative, are approximately, if 4m4v2>gm+ 
T’m3, 

o 
1 

= _ gm+ T’m3 
2m2v ’ 

co2 = - +m2v. (25.24) 

Here 1 co1 I< Iw2 1 and hence CX~ is the more important root inasmuch as it represents 
a slower damping of the motion. As is pointed out by LAMB (1932, p. 628), the 
root mol corresponds to a value of 1 only slightly less than m, so that the motion 
is nearly irrotational. It should also be noted that by different methods of 
analyzing (25 .I 7) for large v one may obtain somewhat different coefficients for m2. 
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Sect. 25. Waves in a viscous fluid. 643 

In the preceding analysis it was assumed explicitly that 1 had a non-vanishing 
real part. If 1 is pure imaginary, I =il’, another family of solutions exists. It 
is now convenient two write @ and !P in the forms 

CD =aemYewtcos(mx+a), 
Y= (ccos1’y+dsinl’y) ewtsin(mx+a), (25 25) 

where 
w =-v((2’2+m2)<0. (25 26) 

The motion is thus a purely subsiding one. The boundary conditions determine 
the following relations between a, c, and d: 

& - 1’2 
a=c 2dJ J a=c-p& [v”(wG-- 1’2)2+ gws + T’m3]. (2& 

All real values of I’ are now admissible. The surface profile is given by 

^Il=c &eotcos(mx+a). (25.28) 

The two sets of solutions may now be used to investigate the development of 
an initial disturbance [cf. SRETENSKII (1941)]. 

Forced standing waves. We may apply Eq. (25.16) or (25.17) to answer 
the following question. Suppose that m is given. Can we determine #,, in such 
a way that a steady standing wave 

‘7 = A, eviut cos(mx + ct) (25.29) 

of prescribed frequency o is maintained? From (25.17) $J,, is then determined by - m-PO = (2m2v - i~)~ - 4y2m3 QAO v ma-if +gm+ T’ma. (25.30) 

If, for small viscosity, one discards terms higher than the first in V, one obtains 

p,=4io,umA,-G+gm+ T’ma. (25.31) 

If we take os=gm+T’ma, the frequency obtained from perfect-fluid theory, 
the necessary pressure distribution becomes 

$=4o,~mA,,ie-~“~cos(mx+cr). (25.32) 

Thus the pressure must lead the surface displacement by a quarter of a period. 
Standing waves-finite depth. If the fluid is of depth h, the analysis 

is similar to that above, but yields expressions of much greater complexity. The 
functions @ and !P may be shown to have the forms 

@=&[~Zcoshm(y+h) +cmsinhm(y+12)]eUtcos(mx+a), 

Y = [ccoshm(y +Iz) +dsinhm(y +h)] eatsin(mx+a), 1 
(25.33) 

where again 
w = v (12 - m2) . (25.34) 

Let 
L = coshlk, L’= sinhlh, M = coshmh, M’ = sinh mh. 

Then c and d are related by 

2m(cmM + dl M’) - (P+ m2) (CL + dL’) = o. (25.3 5) 
41" 
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644 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. sect. 25. 

The relation between 1 and m corresponding to (25.16) becomes 

v2 (12 + ,2)2 JZ2 + ~3) (lLiW-~L’M’)-2n22Z 

(P+wz2) (ZLW-PBL’M) 

and the surface profile is 

11= & (CL + dL’) ewtcos(mx +a) =Aoe”tcos(mx +u). (25.37) 

The formulas become more perspicuous in the case of small viscosity and no 
external pressure and exhibit the importance of the presence of the bottom. If 
in (25.36) one sets $J,,= o and retains only terms of order v”, vh and v, the following 
equation results : 

UP-m~llYtanhmk~~+~m2v~2+(gm+T’m3)tanhmhco- 

-((gm+T’m3)m]lYco~+~(gm+T’m3)m2vtanhmh=0. 1 
(25.38) 

One may solve this equation by expanding o in powers of vi, 

cu =co,+co,p +w,v + ...) 

substituting in (25.38) and keeping only terms in v”, vi and v. The term independ- 
ent of v yields coo= &- io, ,, where o. is given in (24.10) and is the frequency for 
an inviscid fluid. To the order of accuracy consistent with (25.38), one finds 

o = & ia,- (I f i) $n]I2o,vcosech 2mh - 2m2v cosh4nzh+cosh?,mh-I 
---- . (25.39) cosh4mh-1 

The first two terms were given by HOUGH (1897). The correct expression (25.39) 
was first given by BIESEL (1949); HOUGH had given - 2m2v for the last term 
but the apparently made an error in calculation, for (25.39) was derived inde- 
pendently of BIESEL’S work and has also been checked by CARRY (1956) [BASSET’S 
analysis (1888, p. 314) overlooks the terms in vi]. 

The formula (25.39) should be compared with (25.21), the corresponding 
formula for infinite depth. There the effect of viscosity enters only with the first 
power of v. The dissipation of energy in the body of the fluid is evidently of less 
importance than in the vicinity of the bottom. When two fluids are superposed, 
a similar phenomenon occurs in the neighborhood of the interface [cf. (25.44)]. 

Standing waves-stratified fluids. Consider now the situation in which 
a fluid typified by e1 and ,u~ fills the space y<o and another typified by e2c e1 
and p2 the space y>o. The equations to be satisfied in the two fluids and at 
their interface are given in (10.3). The method of solution is analogous to that 
used for a single fluid. However, separate functions @r,, Y1, and G2, U2 are needed 
for the lower and upper fluids. For a standing-wave solution they may be taken 
in the form 

~~=a,eWtellzYcos(mx+a), ul, = b, ewt e21Y sin (m x + a) , 

Q2 = a2 ew t e+Y cos (m x + M) , Y2 = b, eat e--lay sin (m x + u) , i 
(25.40) 

where we assume both 1, and 1, to have positive real parts. LU, I,, 1, and m are 
related by the equation 

0 = v1 (1: - m2) = v2 (I; - m2) . (25.41) 
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Sect. 25. Waves in a viscous fluid. 645 

Substitution of (25.40) in the various boundary conditions at y =O gives four 
homogeneous equations relating a,, as, b,, and b,. The determinant of the coeffi- 
cients set equal to zero yields another relation between cul, I,, I, and m : 

CQ+e~~~"+~e~-e~~~~+~~31~~u,~+~u,~,+~u,~+~u,~,1+ 
+4~m(P,m flu,&) (L&m +plh) =o. I 

(25.42) 

In the limiting case of small viscosity, (25.42) gives 

This has the approximate solutions, when the coefficient of 09 is small relative 
to the last term, 

where crO is the perfect-fluid frequency given in Eq. (24.14). This solution was 
first given by HARRISON (1908). The most significant physical fact about (25.44) 
when compared with (25.21) is that, to the order of approximation considered, 
the latter shows a rate of decay proportional to m2v and no influence of viscosity 
on the frequency, whereas (25.44) shows a rate of decay and an alteration of the 
frequency proportional to m J/V (in a dimensional sense). The greater importance 
of viscosity for stratified fluids may be ascribed to the different boundary condi- 
tion at the interface. HARRISON computed the wave velocity and modulus of 
decay (time required for the amplitude to decrease by a factor e-l) for an air- 
water interface at 17” C (pi = 1, ez =O.OOI 29, v1 =0.0109, v2 =o.I~% T = 74 in 
c.g.s. units). In the following table reproduced from HARRISON’S paper Q, ‘u, 

v. (cmjsec) 
VC 

V 

70 

z 
rc 

12.48 39.46 124.79 
24.90 40.05 124.81 
24.89 40.04 124.81 

I: 162 1”‘56:2 3h12m39?4 
IS125 ID34S 1 lh21”40?6 
1S106 lrn34!0 l’121m40?3 

394.62 
394.62 
394.62 

321h 5m40S 
36h 50m 36’ 
36h 50m34S 

and v are the wave velocities neglecting, respectively, both surface tension and 
viscosity, viscosity, and neither; zO, z, Z, are the moduli of decay taking account 
of the water viscosity only, a water-air interface without surface tension and a 
water-air interface with surface tension. A striking aspect is the apparent im- 
portance of the air-water interface in damping long waves and almost total lack 
of influence on wave velocity [the latter fact is obvious from (25.44)]. 

For very large viscosities the results are analogous to those for a single fluid. 
The two values of CD analogous to those in (25.24) are 

wl=-~m-~&m+Tm3 1 ( elf@2 

,e1+ e2 nzz z+ 
~,=--m2iuti~ 

e1+ e2 
(25.45) 

The analysis of the roots of (25.42) for general values of v1 and v2 is difficult. 
However, it has been carried through by CHANDRASEKHAR (1955, especially 
pp. 170-173) for the special situation vi =v2 and T =O. In this case I1 =I,. 
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The behavior is similar to that described for (25.17) except that the critical 
value K, separating a steadily decaying motion from an oscillatory decaying one 
is now a function of Q - ez)/(el + es). This value (actually a different one since 
he chooses a different parameter) is tabulated for a variety of density combina- 
tions. Further analysis of (25.17) may be found in a paper by HIDE (1955) and 
TCHEN (195613); 

KUSAKOV (1944) has carried through an analysis similar to HARRISON’S when 
the upper fluid is of depth h2, the lower of depth hr. However, the results do 
not seem to be consistent with HARRISON’S (or those above) when h, and h, 
become large. This problem has also been considered by HIDE (1955), but with 
an approximation that neglects the viscous boundary conditions on the walls. 
HARRISON, in the same paper, has treated also the problem when the upper fluid 
is of finite depth and with a free surface. We shall not reproduce the results 
except to remark that his computations show that a thin layer of fluid of slightly 
different density exerts a very marked influence on the damping. The effect of 
a variable surface tension upon wave motion is investigated briefly in LAMB 
(1932, 3 351) and at some length in LEVICH (1952, pp. 477-490). 

Pulsing stationary source. DMITRIEV (1953) has derived the form of 
the functions CD and Y and the surface profile in the presence of a submerged source 
of pulsating intensity - Q cos ot. We shall give here only his expression for the 
surface profile and an asymptotic expression for large distances from the source. 
Let the source be located at (0, -ho) and let 

The surface profile is then represented by 

v =Re Qeiot cJ O" 
I' 

I- 2ix3 

2-6 g 4EriX3(X-(i+X3)a)-X3l+i(X-F) 

--..-~~~~~-ee-""xcosXX~x 

0 (25.46) 

=Q-~(l+100~4)~e- hE-4E”~Zcos(ot-sZ+4e3h-arctan10s2)+... . 

26. Stability of free surfaces and interfaces. In this section we wish to examine 
the circumstances under which a small disturbance of a free surface or of an 
interface between two fluids will increase in magnitude with time. The energy 
for this increase may come either from available potential energy, e.g. if the lower 
fluid is lighter than the upper one, available kinetic energy in the case of flowing 
fluids, from forced motion of solid boundaries, or possibly some other source 
such as a given pressure distribution over a free surface. Surface tension and 
viscosity may be expected to have a stabilizing effect, so that special interest 
attaches to the study of their influence. We shall use the nature of the energy 
source as a convenient one for separating classes of problems, even though not 
every situation falls clearly into one of them. 

Since the boundary conditions and equations which we shall use for the 
mathematical analysis have been linearized, following the assumption that the 
disturbances are small, one cannot expect the predictions of the theory to be 
valid quantitatively much beyond the initiation of an unstable motion. How- 
ever, a great advantage in the use of linearized theory is that an arbitrary initial 
disturbance can be analyzed into Fourier components and the behavior of indi- 
vidual components examined separately. 

u) Interface between stationary superposed fluids. Following our earlier nota- 
tion, let us identify quantities referring to the lower fluid by the subscript 1 
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and to the upper fluid by 2. Let a sinusoidal disturbance of wave number m 
exist at the interface. Consider first the case of perfect fluids with no surface 
tension. Then, if both fluids are infinitely deep, the relation (14.28) must hold. 
If el> ez, the standing-wave solution of Sect. 146 obtains. However, if el< ez, 
then a2<0 and CT is imaginary. Let ~02 = - oa, i.e. 

&~gm. (26.1) 

Then one must replace cos (ot +z) in the Qi of that section by, say, sinh wt. 
The profile of the free surface is then, according to (10.8), given by 

y =Asinmxcoshu,t. (26.2) 

The amplitude of the initial corrugations of the surface evidently increases very 
rapidly with time, and the solution is a valid approximation for only a limited 
time interval. The nature of the disturbance need not have been restricted to 
sin mx; any function M (x, z) satisfying A pl +m2 ~1 =O would have yielded the 
same behavior. Eq. (26.1) still holds if the two fluids are bounded below and 
above, respectively, by y = - /zr and y = h, except that u) is given by 

02 zz ez - e1 
ez coth 112 h, + el coth m h, 

gm< @z-e1 
ezgmgm. (26.3) 

The surface is still unstable, but the rate of growth of the amplitude is slower. 
Effect of surface tension. Let us now suppose that surface tension 

acts at the interface. Then the relation between o and m given in (24.14) or 
(24.15) must hold, and a standing-wave solution is possible even if e2> er, provided 
that (24.16) holds, i.e. 

@2 < @I+ y * (26.4) 

Thus the interface is stable under small disturbances of sufficiently small wave 
length. If the unequality in (26.4) is reversed and we again set o2 = - 02, then 
(26.2) holds once more and the solution is unstable. However, the value of w2 
is less than that when T =O, so that the rate of growth of the disturbance is 
retarded. It is also clear from the form of the relationship between co2 and m 
that there is a wave number for which ~2, that is the rate of growth of the disturb- 
ance, is a maximum. If both fluids are of infinite depth this mode of maximum 
instability occurs when 

m2=(e2-e1)s/3T* (26.5) 

The effect of finite depth of the fluids is to displace the position of the maximum 
to higher values of m (smaller wavelengths) but a precise calculation requires solv- 
ing a transcendental equation. 

Effect of viscosity. The influence of viscosity in stabilizing interfacial 
disturbances has been the subject of a number of recent papers, in particular 
BELLMAN and PENNINGTON (1954), CHANDRASEKHAR (1955), HIDE (1955) and 
TCHEN (1956). The relevant equation relating co and m is now (25.42). Because 
of the high degree of this equation it is not easy to give a complete discussion of 
its admissible roots. However, it is easy to establish that if 

(el-e2)s+Tm2<0, 

then (25.42) has a positive real root IX,, satisfying 

O<co,<l/(~Z-~1)gm-Tm3. 

(26.6) 

(26.7) 
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Thus the presence of viscosity does not alter the conditions for instability, as 
the presence of surface tension did, but it does have a stabilizing effect in that 
the rate of growth of a disturbance is slower. 

In order to show the existence of a positive root under condition (26.6), one 
can write (25.42) in the form 

and sketch as functions of cu the curves represented by the two sides of the equa- 
tion (remembering that I, and I, are functions of w). The statement above then 
follows easily from the fact that both curves are continuous and the one 

represented by the right-hand function 
starts at the origin like 

and goes to -CO in the fourth quadrant, 
behaving as w--+ 00 like 

Fig. 33. 

A more elaborate discussion of the roots is 
given by BELLMAN and PENNINGTON (1954). 

The behavior of ok,, as a function of m 
in the interval defined by (26.7) and in 
particular the mode of maximum instability 
has been investigated by the authors cited 

earlier. CHANDRASEKHAR has computed the curves q,(m) for vl =y2, T =o arid 
a number of values of (e2 - e1)/(e2 +er). HIDE has recomputed these by an 
approximate method and then applied the method further to a fluid of finite 
depth with a continuous density variation e0 e BY. TCHEN has devised a different 
method of approximate computation and includes the effect of surface tension. 
Fig. 33, which is chiefly qualitative, shows the variation of o2 as a function of m 
in the interval of instability. 

Accelerated fluid. If the whole system of fluid is being accelerated in the 
y-direction by a constant amount 5, =gr, then the relative motion in a moving 
coordinate system is the same as if the system were at rest and g had been replaced 
by g+g,, as is immediately evident from Eq. (2.15). With this change the 
reasoning of the preceding paragraphs still applies. This fact was pointed out by 
G. I. TAYLOR (1950) who, on the basis of it, formulated the following rule (neglect- 
ing the influence of surface tension) : If the fluids are being accelerated in a direc- 
tion from the more to the less dense fluid, the interface is stable; in the converse 
case it is unstable. Experiments carried out by LEWIS (1950) for large accelera- 
tions, about 50 g, confirm TAYLOR’S observation and the predicted initial rate 
of growth. TAYLOR’S paper gave rise to a number of others treating, various 
aspects of the instability of accelerated interfaces. In addition to those cited in 
the last paragraph, we mention INGRAHAM (1954), PLESSET (1954), BIRKHOFF 
(1954), KELLER~~~ KOLODNER (1954), and LAYZER (1955) but shall not summarize 
the contents. The effect of an imposed acceleration oscillating in magnitude will 
be discussed in Sect. 26~. 

/3) Interface betwee% moving fluids. Consider the situation in which the fluid 
occupying the region y < 0 (y > 0) is moving to the left with velocity - c1 (- c,), 
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and suppose that a small disturbance exists near the interface. If we suppose 
that the fluid is perfect and the motion in each fluid irrotational, then we may 
describe it by the velocity potentials 

di,(x,Y,z,t)=--cix+~i(x,Y,z,t). (26.9) 
We shall assume c1 + c2. 

The kinematic boundary condition at the interface may be written, after 
linearization appropriate to the assumption of a small disturbance, in the form: 

qt (% Y, 4 = Cl qz + $lY (% 0, z>4 = c2 17% + q2y (% 0, z>t) . (26.10 ) 

The dynamical boundary condition (3.9) yields the following generalization of 
(10.8) : 

el(~lt-cl~lx)-e2(~2t-c2~2x)+:Q-ez)g~=T(rlx,+r,,) for Y=O. (26.11) 

If 7 is eliminated between (26.10) and (26.11), one finds 

e1htx - ClOlXX) - @2($2t+ - c2$2xx) + 
(26.12) 

+ 

Let us now restrict our attention to two-dimensional motion of fluids bounded 
above by y = h, and below by y = - Jzl, and let the initial displacement be 
11(x, 0). Then from (15.2) we know that the subsequent motion may be resolved 
into harmonic progressive waves moving to the right and left. It will be sufficient 
for our purpose to examine a single component of the spectrum. Hence, we look 
for a solution in the form 

q1 = a, cash m (y + 12,) ei(mx-ot), 

q2 = a2 cash m (y - &) ei(nax--ot). 1 
(26.1’3) 

It follows from (26.10) that (cl -cJ qx = - &, +&,,. Hence 

r=--i- 
Cl - c2 

[a, sinh m h, + a2 sinh m Jz,] ei(mx-at). (26.14) 

It then follows from (26.10) that 
a,sinhmhI+a,sinhmhz _ aim 

cl- cz 

----sinh~~12,--S!!L 
a+c,m o+c,m 

sinh m h, . (26.15) 

Substitution of (26.13) in (26.12) and use of (26.15) yield the following relation 
between 0 and m: 

~,(~+c,m)2cothmh,+~2(~+c2~)2cothmh2-(~~-~2)gm-T~3=o. (26.16) 

The solution may be expressed as follows: 

u -=- cl el coth m h, + c2 ez coth m h, 
m --f el coth m h, + ea coth m h, 

- 

zt 
Q - es) $ + Tm el ea coth m h, coth m h, 

el coth m h, + ez coth m h, - (Cl - c2j2 I 

(26.16) 

T. (el coth m h, + pz coth m hz) 

It is evident from the form of the term under the radical that ~7 cannot be real 

Ronald W. Yeung
"Surface Waves Online" - Copyright 2002, Regents of the University of California.  All Rights Reserved



650 JOHNV.WEHAUSEN and EDMUNDV.LAITONE: Surface Waves. Sect. 26. 

It is thus evident that there are no real solutions unless the left-hand side is posi- 
tive and that there may even then exist an interval of wave numbers for which 
the disturbance is unstable (if both g and T are zero, such a velocity discontinuity 
is always unstable). If one assumes Q~>Q~, the minimum value of the left-hand 
side is 

2 l/k?1 - e2) g * 
and occurs for m2 = (ei - ez) g/T. Since 

(26.18) 

Q~ e2 coth wz h, coth m h, 
> e1ez 

eI coth m k, + e2 coth m 15, el+’ 

the disturbance will be unstable for some wave numbers whenever 

(26.19) 

One may conclude from (26.19) that the horizontal walls have a destabilizing 
effect in the sense that wave numbers which are stable for infinitely deep fluids 
may become unstable modes in the presence of walls. For an air-water interface 
the right side of (26.20) is about (646 cm/sec)2. The corresponding wavelength 
is 1.71 cm; if the water is at rest (cr =O), then the wave velocity is 0.84 cm/set 
in the direction of the wind. 

Let us suppose that c1 and c2 are both positive, i.e. that both fluids really do 
flow to the left. Then it follows from (26.16) that, if the roots are real, one of 
them is always negative and thus, from (26.13), represents a wave moving along 
the interface in the direction of the stream. The other will propagate upstream if 

Q - e2) 5 + T m > @I ci coth m Jzr, + e2 ci coth m k,, 

otherwise also downstream. 

(26.21) 

An investigation along the above lines of the stability of an interface between 
flowing fluids was first given by KELVIN (1871). Similar treatments with addi- 
tional information may be found in many texts, especially LAMB (1932, $9 232, 
268) and RAYLEIGH’S Theory of Sound (Cambridge 1929, 9 365). KELVIN’S 
intention was to try to predict the minimum wind velocity which will cause a 
small disturbance on smooth water to increase in amplitude, and to find the 
unstable wave lengths. The predicted minimum velocity, roughly 650 cm/set, 
is much higher than the observed minimum which is about 100 cmjsec. An evident 
objection to the analysis above is that viscosity of both air and water has been 
neglected. Since this alters in an essential way the behavior of the fluids near 
the interface, it is not surprising that the prediction is not accurate. One should 
not expect confirmation except in circumstances in which it is possible to show 
that the effect of viscosity is confined to a neighborhood of the interface small 
with respect to the minimum wave lengths considered. The subject of wind 
generation of waves is still in an unsettled state. One will find summaries of 
the present status in the article by H.U. ROLL in Vol. XLVIII of this Ency- 
clopedia, especially pp. 703 - 717, and also in a critical exposition by URSELL 
(1956). A summary of some of the work in the USSR on wave generation is in- 
cluded in SHULEIKIN (1956). 

The inclusion of viscosity in the analysis above leads to a somewhat more 
difficult development than in the case of standing waves. An exposition of the 
present achievements in this theory will be omitted; they consist chiefly of papers 
by WUEST (1949) and LOCK (1951, 1954). 
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y) Vertically oscillated basins. Let S denote the wetted surface of a basin 
and F the water surface when the basin is at rest. We shall suppose that the 
basin is being oscillated in the y-direction according to some given law, which 
may be specified by giving v,,(t), the velocity of a point of the basin. It will be 
most convenient to describe the motion of the fluid in coordinates fixed in the 
basin; these will ‘be denoted by x, y, z. We shall assume the oscillations and 
the resulting motion to be of small amplitude so that we may linearize the equa- 
tions and boundary conditions. 

If @ is the velocity potential for the motion relative to the basin and 17 the 
profile of the surface, both in coordinates fixed in the basin, then it follows easily 
from (2.17) that the only necessary change is to replace g by g + fi, in the bound- 
ary conditions at the free surface. They become: 

71 (x, 2, 4 = $ (% 0, 2, 4 , (26.22) 

(g + $0) q + @l(% 0, 2, t) = T’(rlz* + 1722) > T’ = T/Q. (26.21) 
On the basin walls one must have 

COti= on S. (26.24) 

We wish, as usual, to investigate the character of the motion of the fluid. 
The problem formulated above is clearly related to the problem considered 

in Sect. 23~. However, the resulting motions are quite different. RAYLEIGH 
(1883) appears to have made the first theoretical investigation of this problem. 
More recently it has been studied by MOISEEV (1953, 1954), BENJAMIN and 
URSELL (1954), SCHULTZ-GRUNOW (1955) and BOLOTIN (1956). MOISEEV’S ana- 
lysis is the most general in that the only restriction upon the basin shape is that 
it should allow construction of a GREEN’S function for the Neumann problem; 
surface tension is not taken into account. BENJAMIN and URSELL restrict them- 
selves to basins in the form of a vertical cylinder with horizontal bottom, but 
include the effect of surface tension. However, at the intersection with the walls 
they assume a 90” angle of contact with the free surface. This is in contradiction 
with the observed behavior of fluids but simplifies the mathematical treatment. 
In spite of this shortcoming it seems desirable to include the effect of surface 
tension, and this will be done below. BOLOTIN’S paper considers a modification 
for viscous damping. The treatment below follows closely that of BENJAMIN 
and URSELL. 

Let the basin be of depth t%, let C denote the intersection of the walls with 
the plane y =O, and let n be a normal to the wall at a point of C. Then, from 
(26.22) and (26.24) it follows that ~jr~*= c&,,,=O, or “/I,=const at each point of C; 
we take this constant to be zero, thus assuming a 90” contact angle with the wall. 
It then follows from (26.23) that (Y]~~+Y&=o. 

Let q+(x, y, Z) be a set of functions harmonic in the region bounded by the 
basin and the plane y =0 and satisfying (26.24), and such that q+ (x, 0, Z) form 
a complete set of orthonormal functions in the area of the (x, z)-plane bounded 
by C. Then @ (x, 0, Z, t), q (x, z, t) and vXx +vZZ can each be expanded in series 
in yh(x, 0, x). The expansion of @(x, 0, Z, t) determines @(x, y, Z, t) as as eries 
in q,~~(x, y, z). In the case at hand, when the basin is a vertical cylinder, one may 
separate variables as in Sect. 12~ and construct a set P)~ in the form 

P)k (% YJ d = 
cash “k (Y + h) ‘J% (x> 2) 

cash ?‘%k h , (26.25) 
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where 

(26.26) 

The eigenvalues rnX are determined by the boundary condition on the contour C, 
namely (a/&) vk=O. 

Let the expansion for 11 be written in the form 

7 (% z, t, =%Elak (d Q)k (% d * 

Then, by differentiating (26.27) and using (26.26) one gets 

%x + %z = - x uk @) %t Q)k (% d . 
If 

(26.27) 

(26.28) 

then 

and, from (26.22), 

Hence 
b, (t) mk tanh m,h = b, (j) . 

(26.29) 

Now substitute (26.27) to (26.29) in the remaining boundary condition (26.23): 

.Z [(g + 6,) a/< + T’ mfak+n/6iikcothmkh] plkEO. 

Since the P)~ are orthogonal, we may set each coefficient of vk equal to zero. 
With the special choice 

i,=ccosat (26.30) 
the following set of differential equations determine the ak: 

&(t) + [(gm, + T/m%) tanh m,+k + cmk tanh mk/% cos ot] ah(t) = 0. (26.31) 

If we set 

z = ;at, #k = f (gmk + T’mi) tanh m,k = 4 2, 

qk=- $ cmk tanh mk/$, I 
(26.32) 

where a, is the frequency of free oscillations in the mode mk when the basin is 
fixed, then (26.31) takes one of the standard forms for the Mathieu equation: 

~~,+[~~~-2q,~cOs2t]~k=o. (26.33) 

Of particular interest in the present context is the behavior of the solutions ak 
as r, or t, becomes large. It is known from the theory of differential equations 
with periodic coefficients that a pair of fundamental solutions can be given in 
the form 

epct Q(r), e-p’Q (- z) , (26.34) 

where Q is of period n, unless i/b is an integer. In the latter case there exists a 
periodic solution, of period z if ip is even and of period 22-c if odd, and another 
independent nonperiodic solution. The coefficient p will be a function of the 

Ronald W. Yeung
"Surface Waves Online" - Copyright 2002, Regents of the University of California.  All Rights Reserved



Sect. 27. Higher-order theory of infinitesimal waves. 653 

parameters fi,, qk and it is particularly pertinent to the present investigation 
to know for what regions in the (p, q)-plane p has a nonzero real part. These 
regions have been investigated for other purposes and may be found, for example, 
in N. W. MCLACHLAN’S Theory and application of Matkieu functions (Oxford, 
1947, pp. 40,41). In Fig. 34, reproduced from BENJAMIN and URSELL, the shaded 
regions represent the unstable regions of the (p, q)-plane where ,u has a nonzero 
real part. In the unshaded regions ,u is pure imaginary (but not an integer) 
and the two solutions (26.34) ,are bounded for all r. The boundaries between 
regions correspond to the periodic solutions occurring when ip is an integer. 
Irrthe unstable regions the periodicity behavior of the solutions is of two types. 
In the second, fourth, . . . regions p is real and the solutions (26.34) are functions 
of period z multiplied by-expdnentials. 
In the first, third, . . . regions ,u =pi+i, pi 
real, and the solutions (26.34) now become 
functions of period 2n multiplied by 
exponentials. In terms of t the two sets 
of regions correspond, respectively, to 
frequencies o and 80. 

For a given mode of oscillation mk 
one must compute p,S and qk and plot 
(&, qh) on the stability chart in order to 
find out whether the mode is stable or 
not. It seems likely, and, in fact, has 
been proved by MOISEEV (1954, p. 44), 
that for any given values of cr and c some 
of the possible modes will be unstable. 
However, the analysis above has neglected 
the damping effect of viscosity and it 
may be supposed that the only unstable 
modes which actually occur are those 
associated with the smaller values of mk. 
In any case, as has been emphasized 

P 

Fig. 34. 

earlier, the analysis is only suitable for describing the initial stages of the motion. 
If the half-frequency of oscillation $0 is equal, or nearly so, to one of the 

frequencies oh for free oscillation of the fluid, or to a subharmonic of o,, i.e. 
$0 = a&, then fib= 1, or G, and it is evident from Fig 34 that (ph, qk) will be 
in an unstable region. If ia =a,, (pk, qk) will lie in the lowest region and 
standing waves with half the frequency of the basin will be generated. If 
a = a,, (&, qk) will lie in the second region and the generated standing waves 
will have the same frequency as the basin. Thus the mode ak can be excited 
by oscillating the basin with frequency either ak or 2al,. It is pointed out by 
BENJAMIN and URSELL that an apparent discrepancy between experimental 
observations of FARADAY and RAYLEIGH and of MATTHIESSEN can be explained 
by the above remarks. 

BENJAMIN and URSELL made an experimental investigation with a circular 
cylinder in order to determine by experiment the boundaries of the lowest region 
of instability. The measurements provide a surprisingly good confirmation 
within certain limitations. 

27. Higher-order theory of infinitesimal waves. It is implicit in the theory of 
infinitesimal waves developed in the preceding sections of this chapter that the 
approximation given by first-order theory to the solution of a particular problem, 
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assuming that one exists, can be improved by including further terms in the 
perturbation series. Thesolution of the resulting boundary-value problems, at 
least in the simplest cases, can be carried through in a manner similar to that of 
the first-order theory, although the computations become more and more tedious 
the higher the order of approximation. Nevertheless, in view of the interest of 
the results, the computations have been carried through by a number of persons 
and by a variety of methods. 

STOKES (184.9) was apparently the first to make the calculation for progressive 
waves; in fact, the method used below in Sect. 27~ is not essentially different 
from STOKES’ first method. Later, in connection with the publication of his 
collected papers, STOKES (1880) added a supplement describing a different proce- 
dure. RAYLEIGH turned to the problem several times (1876, 1911, 1915, 1917) 
and introduced still another method of approximation. It should be noted, how- 
ever, that both STOKES’ second method and RAYLEIGH’S method are limited to 
two-dimensional irrotational progressive waves. RAYLEIGH (1915) seems to be 
the first to have given an adequate treatment of the higher-order theory of stand- 
ing waves. In addition to these classical papers there have been many others 
extending or improving the earlier theory; some of these will be noted below. 

In all such computations, and indeed in the numerous first-order computations 
carried out in the earlier sections of this chapter, there is the tacit assumption 
that there exists an “exact solution” which is being approximated and which 
can be approached more and more closely by pursuing the selected method of 
approximation. Unfortunately, it is seldom that one is able to prove the existence 
of an exact solution or of convergence of the method of approximation, and, in 
fact, BURNSIDE (1916) cast doubt upon the usefulness of the Stokes-Rayleigh 
type of approximation of periodic progressive waves of permanent type. BURN- 
SIDE’S objection was later met by NEKRASOV’S (1921, 1922, 1951), LEVI-CIVITA’S 
(1925) and STRUIK’S (1926) proofs of the existence of such waves for both infinite 
and finite depth. However, the existence of a standing wave satisfying the 
exact boundary conditions has not been demonstrated as yet. The same is true 
of the more complicated problems considered in earlier sections. However, this 
mathematical shortcoming is possibly of no more importance than the neglect 
in many problems of relevant physical parameters such as viscosity. 
- One should bear in mind that the higher-order infinitesimal waves considered 
below are not the only higher-order approximations. The solitary and cnoidal 
waves of the next chapter bear a similar relation to the first-order shallow-water 
theory. In addition, in the last chapter another method of approximating exact 
waves, due to HAVELOCK (1919a), will be described. 

CC) Periodic firogressive waves. In the following we shall be seeking a wave 
which moves without change of form, i.e. a progressive wave in the sense of 
Sect. 7. Hence we shall expect to be able to represent di and 7 in the form 

where c is the velocity of the wave. It will be convenient to represent the motion 
in a moving coordinate system, say X=x- ct. However, we shall henceforth 
drop the bar over the x. The boundary conditions at the free surface are then 
the following : 

Tr(X,Z)~~(X,17(X,Z)Z)-~u+rleP)a--CP)z=o, (27.2) 

--q~(x,q(x,4,4 +Q(gradd2+gq-- T’(K1+K1) =o, (27.3) 

See separate file errata.pdf
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where R,*+ Rcl is given by (3.5’) and, as usual, T’= T/Q. Surface tension is 
being taken into account both for the intrinsic interest of the results and because 
of an interesting phenomenon which occurs in the higher-order approximations. 
We shall suppose that the wave length il = 24m of the wave system has been 
given, so that c is still an unknown of the problem. 

Let us now, as in Sect. 10a, assume that pl, “17 and c may all be expanded in 
a perturbation series in some parameter 6: 

p,=&lp(l)+E2cp(2)+..., yj = &yp + &p) + . . . ) (27.4) 
c=c,+&C1+&2C2+.... 

After substituting in (27.2) and (27.3) and collecting terms in the manner of 
Sect. 10a, one obtains the following boundary conditions which must be satisfied 
successively by pl@), q(l), co; vc2), qc2), c,; vc3), rc3), c2: 

c,$) + #f’ = fppqp + (p,p’y/f’ - p$p- c2rlc$ + (&$+$ + 94+p - 

- p&p’ - c117y) + $1) [qp~~) + @&;p] - QpfWyrl’l’ 2, 

g~/‘~’ - c,, cp$’ - T’(qi3J + Y$) = c2 cp,p’ + cl q~,(z”’ + cl q~ij$/‘~’ + co CJJ&‘~’ + 
+ co fp~$f2) + + co ~~~y~(1)2 + grad v(l) . grad q(z) + 

' (27.7) 

+ yl(l) grad f$) . grad q$) - T’[$)Zr#) 2 + ~~$b&!) 2 - 

- 2rl%prP’- #(rE+rL9 (y1!?2+#)2)1> 
where all conditions are to be satisfied on the plane y = 0. It is possible, of course, 
to carry the approximations further, but three steps are ample to illustrate the 
procedures. The solution will be carried through in outline through the third 
order for infinite depth and through the second order for finite depth. As an 
expansion parameter we may take E = Am, where A is a length determining the 
amplitude of the waves. The motion will be restricted to be two-dimensional. 

Infinite depth. The solutions of (27.5) are already known from (1'3.5). 
We take them in the following form 

f$)=$emYsinmx, +)=$cosmx, ctm=g+m2T'. (27.8) 

After substitution in (27.9), one finds 

p(2) + cop = 

CoY~c$ - 
x c,sinmx - c,sin2mx, 

gq’2’ + j-‘7(x2; = - clcocosmx - +cicos2mx. i 
(27.9) 

Elimination of $2) yields 

4d2L++g91 &?-T’q~~~~=2c~c~msinmx--~c~m2T’sin2mx (27.10) 
as the boundary condition to be satisfied by q~(2). If c,+o, one cannot find a 
periodic potential function satisfying (27.10). Hence we set 

cl-o, (27.11) 
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A solution of LAPLACE'S equation satisfying (27.10) with cl=0 and vanishing 
as y--f - 00 is easily found to be 

($2'=35 m2T' 
2 rn g-2nGT’ 

ezmYsin 2mx, 

providing rn2 *g/2 T’. The corresponding expression for ~(2) is 

,(2,=L1 g+m2T'-cos2mx. 
2 m g-2+&T’ 

(27.12) 

(27.13) 

One could, of course, add terms of the form given in (27.8) but with arbitrary 
multipliers. However, such solutions are discarded since we wish to allow only 
first-order terms of this form. 

Two striking facts show up in (27.12) and (27.13): First, if surface tension 
is neglected, @ vanishes and @l) gives the velocity potential correctly to at 
least the second order. The second fact is the zero in the denominator in both 
$2) and y1(2), which shows that v(2) and jlc2) become unbounded as m approaches 
l/$?. One may argue, of course, that this simply shows that validity of the 
perturbation method is limited to smaller and smaller values of Am the closer 
one comes to J’g/2 T’. However, it seems also to be an indication that near m = 
l/g/27 the mode represented by $2) is of the same order of magnitude as that 
represented by $1). That this is indeed the case is clear from an examination 
of the equation determining v(r) and y(z) when m = V$ T’. In fact, v(z) was not 
determined by (27.10) for this value of m and, furthermore, (27.8) does not give 
the complete solution of (27.5). The solution with which we must start in this case is 

~~r~=~[e~~sinmx+ae2~~sin2mx+be2m~cos2mx], m (27.14) 

where a and b are as yet undetermined constants. Thus these two modes of 
motion are of the same order for m = l/g/2 T’. One may now substitute (27.14) 
and the corresponding q(r) into (27.9). By reasoning similar to that used earlier 
in setting cr= 0, we now find 

a=&*, b =o, c,=f *co. (27.15) 

There are thus two possible first-order modes depending upon the sign of a. 
p)(2) is now a sum of terms with modes sin 3 mx and sin 4mx, but will not be 
given here. The wave profile, including modes through cos 2mx, may be written 
as follows : 

q=A cosww+~Am 
i 

g+m2T’ g-221nZT’ COS2~X > I m* 

rj =A 
[ 
cosnzx~~cos2mx, 

I 
(27.17) 

The two signs in the second solution correspond roughly to the change of sign 
occurring in the first when k passes through l/g/2T’. Comparison of the two 
cases also gives an indication of the limitations upon Am necessary in the first 
solution, namely, 

IW<1gg-+2$;‘I. (27.18) 

A reversal of curvature at the center of the wave trough for m< l/g/2 T’, or of 
the crest for m> j’gj2 T’, will occur when 

(27.19) 
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The existence of the singularity in the expressions for y1@) and $2) was first 
noticed by HARRISON (1909). WILTON (1915) examined the matter more care- 
fully, found the solutions (27.17) and, in fact, carried all approximations further. 
Some of WILTON’S computed profiles are shown in Fig. 3 5. Although WILTON 
casts doubt upon the existence of the solution (27.17) with + -2, such profiles 
seen to have been observed by KAMESVARA RAV (1920). However, the matter 
apparently still awaits a thorough experimental investigation, as do also similar 
higher modes mentioned below. 

Let us now turn to the next order, assuming m+ j/p. Substitution of 
(27.8) and (27.11) to (27.13) into (27.7) and elimination of r(3) yield the following 
boundary condition to be satisfied by $3) on y =o: 

c~pl~)Z+gpl~--‘@~Z=c~m 2c,--~c,~~~+~C~~]sinmx+ 
1 

2g-m2 T’ 

1 

++cim[ ,“zzT, --$&]singmx. 
I 

(27.20) 

Again in order to avoid an unbounded solution we must set the coefficient of 
sin mx equal to zero. This yields a value for c2: 

QrnaT’ 3 m2 T’ -- 
g-2m2 T’ 1 8 g+m2T’ ’ 

One may now find a potential function satisfying (27.20) and vanishing as 
y-f - CO. The solutions for v(3) and r(3) are as follows: 

(p(3) = _ 1 co __ 
m2 T’(g + 2m2 T’) 

-e3”Ysinjmx; 
16 m (g-2m2T’)(g-jm2T’) (27.22) 

3 1 2g2-gT’m2-30(m2T’)2 
(27.23) 

$16; (g-Z!m2T’)(g-3m2T’) cos3mx’ 

for m + ljm, @T’. F rom (27.22) one sees again that p)c3) would vanish if 
surface tension were neglected. Although we shall not carry through the com- 
putation, this does not happen for pl c4). It is also evident that another singularity 
has appeared at m =lg/‘j T’. In fact, when one examines the reason for the 
appearance of the singularities, it is evident that a mode of the form cos nmx 
will always show a singularity at m = l/g/a T’. In each such case the reason is 
the same as in the situation discussed earlier with n =2: for m = j/g/n T’ urn, 
the proper first-order solution is of the form 

with a,‘ to be determined subsequently (according to WILTON only a2 is not unique). 
Thus (27.8) should be qualified by m2+ g/n T’. One should note that, although m, 
is getting small (and hence 1, large) as PZ increases, the wave number of the 
second first-order mode is I/ng,lT’. Hence, on the basis of the results in Sect. 25, 
one will expect this mode to be quickly damped for large values of a. However, 
one may presume the first few to be observable. We remark that these special 
associated pairs of first-order waves always straddle the wave number for mini- 
mum cO, namely m,. 
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The wave profile, velocity potential and wave velocity are now given by 

7 =Amtp’+A2 m2"17'2'+ A3m317'3'+ . . . 

fp=Amfp)+A2 &~(2)+p9$3p(3)+ . ..) 

c=c,+Amc,+A2m2c2+~~~. 'I 

(27.24) 

To the third order the profile for pure gravity waves (T’=O) is represented by 
the following function: 

7 =A([1 ++A2 “1 m cosmx+~Amcos2mx+~A2m2cos~mx-~~..} 

=A’(cosmx+~A’mcos2mx+~A’2m2cos~mx+~~~), 
(27.25) 

where A’ = A [I + QA2m2] ; the velocity becomes 

I +- aA2m2+ -..)* 

The velocity potential to the third order is 

(27.26) 

p = A qemysinmx. m 

If one sets g = 0, then the wave profile for pure capillary waves becomes 

~=A([1-&A~m~]cosmx-~Amcos2mx-~~A~m~cos~mx+...) (27.28) 

and the velocity 
I c=rTm[j --&A2m2+...]. (27.29) 

For pure gravity waves the approximations were carried to the fifth order by 
STOKES, RAYLEIGH (1917) and others. 

It is of interest to compare the profiles represented in (27.25) and (27.28). 
The effect of including higher-order terms in pure gravity waves is to sharpen 
and raise the crests and to broaden and raise the troughs. For pure capillary 
waves the effect is just the reverse. For combined gravity-capillary waves the 
increasing importance of the second-order term near m = lg/2 T’ will first show 
up as a reversal of curvature at the middle of the flattened part of the wave; 
formula (27.19) gives the condition for the first occurrence. In Fig. 35 are shown 
a pure gravity wave as computed by WILTON (1914) for Am = 0.86 (here A is 
the amplitude), and five gravity-capillary waves, the last two corresponding 
to the solutions (27.17), also computed by WILTON (1915) for a value of T/eg = 
0.075. It should be remarked that the value of Am = 0.86 is much larger than 
any for which it is possible to prove convergence of the perturbation series and 
is, in fact, very close to the value of A m for the highest possible irrotational wave 
of permanent type (see Sect. 33a), namely 0.891. 

Finite depth. When a solid bottom is present at y = - h, the only necessary 
modification of the preceding analysis is substitution of the boundary condition 
I$(x, --h) =O for I#+-0 as y-t--. This increases the computational labor 
by a substantial amount, but otherwise introduces no difficulties. However, we 
call attention to the remarks on the definition of wave velocity in Sect. 7; the 
velocity c below is the one defined there also as c. 
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The wave profile, velocity potential and wave velocity, including the effect 
of surface tension, are as follows, to the second order: 

(2 + cash 2m h) cosech 25% h 
tanhzmh - 3 T’d (g + T/WI?)-1 (27.30) 

v=Ac, cash w (y + h) 
sinh m h 

sinmx + 

‘m2)cothnzh- (g+T’w2)tanhmh cosh21n(y + h) 
+aAm~~T’m2)tanh2mh-3TT’mZ-- sinh 2m h 

sin2mx 
, i 

(27.31) 

?=c;=($ + I.‘m)tanhmh. (27.32) 

The velocity is the same as in the first-order theory; this occurred also for infinite 
depth. In contrast to the case of infinite depth, the term $2) does not vanish 

Deep-w&ym@ waw: Am-q86 

/2=@?cm,. A=q37cmj c-2q3 cn/sec A-ynn; A-q% cm;c= 7qu cn/sec 

A=~&‘cn; A=q&;c=z2,2cm& 
Gmv&cop/iywares 

Fig. 35. 

when T’ =o. The singularity in the coefficient of cos 2mx still persists provided 
that h>1/3T’/g. The earlier discussion of this phenomenon is still relevant, and 
a detailed one will be omitted here. However, even if surface tension is neglected 
in (27.30), the second-order term may still become large for small values of mh, 
as has been emphasized by MICHE (1944). If one again takes as an indication of 
increasing predominance of the second-order term a reversal of curvature at 
the bottom of the trough, one finds that this occurs for 

I 
Am>-F 

tanh2 m h sinh 2m h 
2Ccosh2nzh ’ 

(27.33) 

or approximately 
Am>Qtanhmhsinh2mk 

42* 
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as given by MICHE. The occurrence of this secondary crest when mh is small 
has frequently been observed. It has been investigated experimentally by MORI- 
SON and CROOKE (1953) and by HORIKAWA and WIEGEL (1959). 

The wave profile and velocity computations were carried by STOKES to the 
third order, and by DE (1955) to the fifth order, for pure gravity waves in fluid 
of finite depth. The following expressions are taken from a report by SKJEL- 
BREIA (1959) : 

“17 = A ~0s m x + $-A m ‘Osh m “,~f~~~~h 2L?!?!Y cos2mx + 

8coshamF, + I + .L A2 m2 -..---..-.-~-- ~0s 3 m x + , . . 
c4 sinha m h 

c2= -c-tanhmh 1 m + A2m2 

(27.34) 

SKJELBREIA has provided comprehensive tables allowing easy computation of v, 
pl and many other quantities of interest, all to the third order. 

Particle orbits. A particularly interesting phenomenon occurs when higher- 
order approximations are used in the computation of the paths of individual 
particles. The equations which the coordinates of a particle must satisfy are 

dx -.-=pl&-Ct,y), $=(Fy(X--Ct,Y)* 
dt (27.3 5) 

Since q depends upon the parameter E, the solutions x and y also will. We assume 
then that x and y may be expanded into series of the form 

x (1) = x0 + & x,(t) + * * * , Y(4 =Yo+EYl(t) +**., (27.36) 

substitute them into (27.35) together with the appropriate expansion of pl in 
powers of E, and then equate the several powers of E separately. This results in 
a sequence of equations of which the first two are as follows 

dx,- 
dt - cp’x” (x0 - co t, yo) ) +;- = # (x0 - co t, yo) ; (27.37) 

(27.38) 

The first set, (27.)7), was already solved in (14.17) and (14.18) and to the first 
order of approximation gave circular or elliptical orbits. The solution for higher 
orders is facilitated by neglecting surface tension and assuming h = 00, for then 
~(2) and ~(3) both vanish. From (27.8) one finds easily the orbit to the second 
order : 

x(t) =~~-Ae~~~sinm(x,-c~t) +Asmscoe2mJ’~t, 

y(t) =yo+Aem~~cosm(xo-cot). i 
(27.39) 

The circular orbits of first-order theory are now modified by a general drift in 
the direction of wave motion. The total amount of fluid transported per unit 
time (and width) is +A2mco. As the formula shows, this additional flow is con- 
centrated chiefly near the surface. 
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When the depth is finite, or when surface tension is taken into account, the 
orbits become more complicated. Let 

j77 (g+3T ‘ms) coth m h - (g+ T’ms) tanh m k 
(g + T’ms) tanhzm h - 3m2T’- * (27.40) 

The particle orbits, accurate to the second order, are as follows: 
cash m (y. + h) x(l)=x,-A ~~~-~~-sinm(x,--c,t)+~~A2n22Ggt 

cash 2m (y,, $ h) 
sinhs m h -+ 

+ l-A2m 
I 
cosech2mF,--3K cos~i~~2(~ : h, 

I 
sin 2m (x0 - co t) , 

I (27.41) 
Y (4 = yo + A sin~i~~~ l h, cos m (x0 - co t) $ 

I 

-/-+A’mK sinh 2m (yO -t h) 
--cos2m(x,- cot). sinh 2m h 

The mass-transport term in x(t) is still present, and in fact, persists to the very 
bottom. The elliptical orbits of the first-order theory are now modified not 
only by the forward drift at all levels, but also by another superposed cyclic 
motion of twice the frequency. The effect of this is to make the orbits approxi- 
mately epitrochoidal (neglecting for a moment the drift) with a small hump 
at the bottom which in extreme cases can become a cusp or a loop. This behavior 
has, in fact, been observed by MORISON and CROOKE (1953). For capillary waves 
the situation is reversed and a dimple appears at the top. 

The existence of mass transport will be reconsidered in the last chapter, where 
it will be demonstrated that it is a general consequence of irrotational motion 
when the exact boundary conditions are satisfied. The theoretically predicted 
monotonically decreasing forward drift with increasing depth is not confirmed 
experimentally for small values of mh, say mk<2. Instead, with respect to a 
coordinate system moving with the mean velocity of the fluid, there is an 
observed forward flow near the bottom and top and a backward flow in the middle 
portions. It is not surprising that the perfect-fluid model does not give a good 
prediction for small nzh, for the high shear rate near the bottom indicates that 
viscosity should not be neglected. LONGUET-HIGGINS (1953b) has, in fact, 
devoted a long monograph to development of the higher-order theory of waves 
in a viscous fluid and finds theoretical drift curves agreeing qualitatively with 
observed ones. We shall not carry through the details here and refer to LON- 
GUET-HIGGINS’ paper. 

Wave energy. One of the striking facts about progressive first-order pure 
gravity waves is that the kinetic and potential energy per wave length are equal 
(see Sect. 15,8). This equal division of energy no longer holds when higher-order 
terms are taken into account. It is particularly easy to show this for F, = 00, 
for then we may use (27.25) and (27.27). The average potential energy in a wave- 
length is 

2 nlm 1) 2 n/m 
~~“=~Sdx~egydy=~S:-esri2dX=~egA2[1 +.+A2vn2]. (27.42) 

0 0 0 

The average kinetic energy is 

= $A2g[1 +A2m2]. 
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Composite waves. Previously in this section we have been discussing a 
wave of permanent type whose prototype is the first-order progressive wave of 
the form 7 = A cos m (X - c t). It is natural to inquire into the behavior of higher- 
order waves whose first-order prototype is composite, say 

Yj=A,cosm,(x-cc,t) +A,cosm,(x-cc,t). (27.44) 

To find the corresponding second-order terms one may use Eqs. (10.11) and 
(10.12); the computations are tedious but not difficult. The third order would 
introduce modifications of both c1 and c2 and lead to a much longer computation. 
As might be expected in analogy with the theory of sound, the second-order 
terms introduce waves of wave numbers m, - m, and m1 + m,, as well as 2 m, 
and 2m,. The velocity potential to the second order is given by 

@ = A, cl emlY sin m, (x - ci t) + A, c2 ernay sin mz (x - c2 t) + 

9% 9942 (5 - +24 A,------ c2) g (27.4 
g (ml - ?-9z*) 

pe(ml-m*)ysin [(mr-m,) X-(m,c,-m,c,) t]. 
- (rnlC~ - m, cJ2 

The profile is then computed from BERNOULLI’S law 

17 =-~-~~(X,7j,t)+S(~~+~~)j 

with retention of only terms of first or second order [cf. Eqs. (10.9) and (IO.I~)]. 
We omit the rather long expression. 

BIESEL (1952) has derived formulas for a composite wave with a finite number 
of components and for F, finite. He computes a number of quantities of interest. 
However, the formulas are very long and will not be reproduced here. 

Three-dimensional waves. By using the full three-dimensional equations 
as given in (27.5) to (27.7) one may develop a higher-order theory of doubly 
modulated waves analogous to those considered in Sect. 14~ by first-order theory. 
This has been done by FUCHS (1952) and SRETENSKII (1954) to whose papers 
we refer for the resulting motion. 

Further references. Development of systematic methods of computation 
of higher-order approximations has recently attracted the attention of several 
persons. Among these are SRETENSKII (1952), BORGMAN and CHAPPELEAR (1957), 
DAUBERT (1957, 1958) in a series of notes, JOLAS (1958) and NORMANDIN (1957). 
SRETENSKII (1953, 1955) has investigated the higher-order theory of wave motion 
resulting from a moving pressure distribution and waves in a circular canal. 

/3) Standing waves. As will be evident below, the formulation of a higher- 
order theory of standing waves is somewhat clumsier than that for progressive 
waves of permanent type. Part of the difficulty stems from the fact that one 
necessarily must deal with one more variable, namely t. The type of motion 
we are seeking will be represented by a profile V(X, t) and a velocity potential 
Cp (x, y, t) periodic in both x and t : 

77(x +ril, t +sz) =“17(x, 4, @(x + Y A, y, t + s z) = @((x, y, t) . (27.46) 

If we fix the wave length il = 23t/m, then the period z =232/o will have to be deter- 
mined as one of the unknowns of the problem. In addition, we wish to have the 
first-order standing wave 17 =A cos mx cos ot of Sect. 14~ serve as a prototype 
and first-order solution of the more general problem. As a further condition, 
we shall suppose the motion to be symmetric with respect to a vertical line through 
a crest. 
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RAYLEIGH (1915) was apparently the first to consider this problem. It was 
later attacked in an entirely different way, using Lagrangian coordinates, by 
SEKERZH-ZENKOVICH (1947, 1951a, b, 1952), who treated both two- and three- 
dimensional waves for infinite depth, two-dimensional waves for finite depth, 
and composite waves for infinite depth. PENNEY and PRICE (1952), following 
approximately RAYLEIGH'S method, carried the approximation for two-dimensional 
motion and h = co to the fifth order, and to the second order for h finite and for 
doubly modulated standing waves. The method used below is a modification 
of theirs. The two-dimensional problem has recently been studied in a series 
of notes by CHABERT D'HI~~RES (1957, 1958). CARRY (1953) has carried to the 
second-order the superposition of two standing waves of the same wave length 
but 90” out of phase and of differing first-order amplitudes. INGRAHAM (1954) 
has carried to the second order the stability analysis of superposed two-fluid 
systems discussed at the beginning of Sect. 26~. 

Since ye and @ are periodic in both x and t, we may expand each in a double 
Fourier series. However, it is also necessary to bring into the form of the series 
some indications of orders of magnitudes of the components, and in such a way 
that the first-order term is of the desired sort. We assume the following expan- 
sions for an infinitely deep fluid: 

u = uo + & 0, + &2 u’2 + ’ * * ) I 

q(x,t) =~~f~~y~=~~y~[a~~cos~ot+b~~sinqcrt]cos~mx, 
V=l r=l p,q=o (27.47) 

We may immediately set dfi =O, bfi =O and with no loss of generality also 
cri = 0. Since the mean water level has been fixed at y = 0, we must also have 
at/, = 0. We shall again take E = Am, where A is the amplitude of the first- 
order term. 

Substitution of (27.47) into the exact kinematic and dynamic boundary con- 
ditions, 

‘iDZ(x,~,4”17x-@y+~t=0 
@t++(@j+@y) +gq-T’(R;l+R,1)=0, 1 

(27.48) 

results, as in Sects. 10~ and 27a, in a series of equations for successive determina- 
tion of the coefficients u&, . . . , dfj and cro, or, . . . . Because of the assumed form 
of the solution, the equations are now always linear equations between the coeffi- 
cients. The boundary conditions for @(I) and q(l), namely, 

(27.49) 

yield 

u u(l) sin cro t + o. bhycos u. t = 0, - 0 01 

-~oa~~sinoot+oob~~cosaot-~[c~~+c~1~cosoot+~;~sinaot] =O; (27.50) 

g [a$1 cos a0 t + b&in o, t] + [ - o, c pi sin a0 t + o, d/j11 cos a,t] = 0, 

(g + m2 T’) [upi + aill cos co t + bfi sin o. t] + (27.51) 
+ [ - u. cili sin 0, t + 0, d$ cos a0 t] = 0. 
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From these follow immediately 

Sect. 27. 

ao1- Ol--Cl0 -%o -07 (1) - b(l) - (1) - (1) - &pi = _ .'O uiii 
112 ) $4 = - a0 b\lj, m (27.52) 

and 
u;=gm+m3T’. (27.53) 

We shall in addition fix the phase by making the arbitrary choice 

(1) - 1 all- 112 > bili = 0, (27.54) 
so that 

p=;COSmxcosoot, Q(l)= -$coslr,xsina,t. (27.55) 

This is a rather clumsy way to derive a first-order solution which was found 
much more directly earlier in Sect. 14~5 Nowever, it provides a caricature of 
the procedure necessary at each new stage of approximation, Since the higher- 
order approximations lead to extremely tedious calculations, they will be com- 
pletely omitted and only the results given. 

The profile and velocity potential through the second order are given by 

rj=Acosa,tcosmx++A2m g+m2T’ 
g+4w2T’ 

cos2mx + 

+ + A2 m ,“-‘z++z’;, cos 20, t cos 2m x, 
(27.56) 

-+A%rOgT$& sin 20, t ezmY cos 2m y, I 

for m2+g/2T’; here q=O. If m2=g/2T’, the situation is similar to that dis- 
cussed in Sect. 27,~ following (27.13). For this value of nz we must start with a 
first-order solution of the form: 

Q(l) = - $ [sin 0, t e myoma m x+(b, sin 2~7, t - b, cos 2a. t) e2my cos 2mx], 

~(~)=~[coso;,tcosmx+(b,cos2aot+b2sin2~ot)cos2mx]. 
I 

(27.57) 

The values of b,, b, and or are now determined by the second-order equations and 
are 

b,=f$ b,=o, CT,= f +o,. (27.58) 

Thus the first-order profile for m2 =g/2 T’ is 

~=AcosuotcosmxfQAcos2aotcos2mx. (27.59) 

The amplitude relation between the two first-order modes is the same as for 
progressive waves of this length. 

The expression for the third-order standing wave is very clumsy if T’ is re- 
tained. Also, as might be expected from analogy with the progressive wave, 
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Sect. 27. Higher-order theory of infinitesimal waves. 665 

another apparent singularity appears for ~2 =g/3 T’. If one sets T’= 0, the 
expressions for v and @ become much simpler and are as follows: 

rj = Acosotcosmx ++A%ncos2nzx ++A%cos2~tcos2mx + ’ 

+&A3m2 [- 2cosjatcosmx +gcosotcos3mx + 

+3cos3atcos3mx; 

@=--$sinotemycosmxf~oA2sin20t+ ’ (27.60) 

-+$omA3sin3atemycosmx +~~-anzA3sin30te3mycos3m X; 

0=1/p 1--$A2m2. 
--( 1 

As has been mentioned earlier, the approximation has been carried to the fifth 
order by PENNEY and PRICE (1952). H owever, it is not necessary to carry the 
approximation so far in order to see some important features of the motion, 
namely the sharpening of the crests and flattening of the troughs, the absence 
of any nodal points and the decrease of frequency with amplitude. One interest- 
ing feature does require carrying the approximation to at least the fourth order: 
this is the absence of any time during a period when the surface is completely 
flat, In connection with an experimental test of a predicted standing wave of 
greatest amplitude-length ratio by PENNEY and PRICE, G.I. TAYLOR (1953) has 
also provided an experimental verification of the correctness of the theory in 
an extreme case. 

Orbits. The method of computation of orbits including higher-order terms 
is the same as that outlined at the end of Sect. 27~ and we omit a detailed exposi- 
tion. For infinite depth and T’= 0 the orbits to the second order are given by 

x=x0- Ae”YOsinmx,coso,t, 

y=yo+AemY~cosmx,coso,t+~A2me2m~~cos20,t. 1 
(27.61) 

The effect of the last term in y is easily seen to be a small wiggle superposed on 
the first-order straight-line trajectories discussed in Sect. 14a, except directly 
beneath the crests where the trajectory is still vertical but with the midpoint 
somewhat above the equilibrium position. 

Pressure distribution. A particularly interesting consequence of keeping 
second-order terms appears in the behavior of the pressure distribution. From 
(27.56) and BERNOULLI’S theorem one finds for the average pressure over a wave 
length at depth y 

2. 
li--l)o=~J’(P-Po)dX=--ey---$A2~~e2mY+ 

0 

+aeA20te2mY cos2~,t--~~A%;cosza,t. 
1 

(27.62) 

The terms with ezrny as a factor drop off quickly. However, the last term is in- 
dependent of y and at all depths yields a fluctuation about the hydrostatic pressure 
with double the frequency of the standing waves. The existence of this depth- 
independent fluctuation, deriving from the term Qt in BERNOULLI’S theorem and 
the purely time-dependent term in @, was pointed out by MICHE (1944, p. 73). The 
matter has been investigated more intensively by LONGUET-HIGGINS (1950) who 
has extended the theory to include a more general wave motion and compressibility 
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666 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 27. 

of the fluid. He has further applied the theory to give a plausible explanation 
of recorded microseisms. KIERSTEAD (1952) has extended LONGUET-HIGGINS’ 
analysis to include two-fluid systems. COOPER and LONGUET-HIGGINS (1951) 
have carried out laboratory experiments showing excellent agreement with the 
predicted pressure distribution for both progressive and standing waves. 

Finite depth. Computations of the surface profile, particle orbits and other 
quantities for finite depth have been carried to the third order by SEKERZH- 
ZENKOVICH (1951) and CARRY and CHABERT D’HI$RES (1957). We reproduce 
here the results only to the second order (for pure gravity waves) : 

r=Acosatcosmx +-kA2mtanhmh x 

~[~+coth~ynh-coth~,h(~coth~~h-~)cos2~t]cos2mx; I 
@=-AZ coshmb+h) 

m ----sinotcosmx +&Aza(y +coth2mh)sin2ot+ (27.63) sinhm h I 

+ $ A2 a T!?K c0S~~~2i~~~ sin 2 a t cos 2 m x, 

8=oi=gmtanhmh, a,=o. 

The pressure averaged over a wave length [cf. (27.62)] is 

P - PO = - Q g y -I- i- =T& [I - cash 2m (y+ h) - 

I 
(27.64) 

- (2cosh2mh-cosh2m(y+h) -1)coszat]. 
On the bottom, y = -h, one finds 

fi-fio=egh--~~A2a2cos2at. (27.65) 

We note that here also, as in the case of progressive waves, the importance of 
the second-order terms in ye and @ increases as mh+O. 

y) Waves ~PZ a viscous fluid. The Eqs. (10.2) to (10.4), used in Sect. 25 in 
developing the first-order theory of waves in a viscous fluid, may be considered 
as the first in a sequence for the determination of higher-order approximations. 
Although the formulation of the equations appears to be straight forward, if 
laborious, the higher-order theory does not seem to have attracted many investiga- 
tors. HARRISON (1909) made a second-order investigation of progressive waves 
and LONGUET-HIGGINS (1953) has recently made an elaborate study of both 
progressive and standing waves in an attempt to explain certain observed features 
of mass transport velocities. We shall not attempt to summarize either paper. 
However, the following results, taken from HARRISON, may be of interest. For 
the wave profile to the second order he gives the following expression when v 
is small [cf. Eq. (25.22)]: 

q =Aew2 “%os (m x - a0 t) + 

+ A2 e-4vmPt [+mcos2(mx-aOt) -m2t&)‘sin2(mx-a,t) 
(27.66) 

where ai =gm. The effect of viscosity, besides damping, is to make the leading 
side of the crest steeper than the trailing side. According to HARRISON the average 
horizontal velocity of a particle, again for small v, is 

A2 ao m e2my-4vmPt _ A2 m21/*a0v x 
x [(4 cos I, y + sin I, y) e(m+ll)y + sin 2m y] e-4vmPt + (27.67) 
+ A2 m3 y [4 e(‘f+JdY sin I, y + 3 e211Y] e-4vmat, I 
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where, as in (25.19), l=l,+il, andv(12-m2)=mM-2vm2+io,,. This formula 
should be compared with A2 m2c0 e 2my computed from (27.39), to which it reduces 
when v = 0. 

E. Shallow-water waves 
This chapter will deal with special solutions based on the shallow-water 

approximation, following the method of FRIEDRICHS (1948) as presented in sub- 
section lop. The shallow-water approximation for the waves over a rigid bottom 
yields a set of nonlinear equations [cf. (10.32)] even in the first approximation. 
If these equations are then linearized, they result in a hyperbolic-type equation 
which reduces to the simple wave equation for a flat horizontal bottom. Con- 
sequently, the solutions resulting from the shallowYwater approximation are 
completely. different in character from those resulting from the infinitesimal- 
wave approximation of subsection 10a and’ Chap. D, which resulted in linear 
equations and linear boundary conditions. That is, the shallow-water approxima- 
tion leads to nonlinear hyperbolic-type equations, whereas the infinitesimal- 
wave approximation leads to a set of linear equations satisfying the boundary 
conditions and having each successive approximation to the velocity potential 
satisfy the simplest elliptic equation, namely the Laplace equation. 

After the first-order shallow-water approximation (10.32) has been applied 
to several problems, the method of FRIEDRICHS (194.8) and KELLER (1948) will 
be extended to obtain the second and third approximations of the shallow-water 
theory and thereby present, for the first time, the exact second approximation 
to the cnoidal wave of KORTEWEG and DE VRIES (1895), and the solitary wave 
of BOUSSINESQ (1871), and RAYLEIGH (1876). These higher-order approximations 
lead directly to relations predicting the maximum heights of cnoidal waves and 
solitary waves. 

28. The fundamental equations for the first approximation. The shallow- 
water expansion method introduced by FRIEDRICHS (1948) is discussed in Sect. IO. 
For this application the expansion para- 
meter E was selected so that the first 
approximation would be identical to the 
nonlinear equations of the classical shallow- 
water theory, which is based on the as- 
sumption of hydrostatic pressure variation ’ -3 

throughout and neglect of the variation 
//---ACHY 

of the horizontal velocity components with 
depth, so that the complicated boundary- 

Fig. 36. 

value problem is greatly simplified to the following nonlinear equations: 

[see LAMB (1932, p. 254) or STOKER (1957, p. 23)]. The coordinates and notation 
are shown in Fig. 36. 

The set of nonlinear equations (28.1) is identical to (10.32) and is the first 
approximation in FRIEDRICHS' (1948) shallow-water expansion method as dis- 
cussed in Sect. 10; this provides some mathematical justification for these 
classical ,equations. It is evident that the higher-order approximations follow- 
ing (10.23) and (10.33) also require that E be sufficiently small; consequently, 
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as will be shown, this expansion method is applicable if the product of water 
depth and surface ,curvature is small. Therefore, in some cases, this shallow- 
water theory is applicable to extremely large water depths as long as the wave 
length is sufficiently long, the most common application being to tidal waves, 
that is, the oceanic tides produced by the gravitational action of the sun and the 
moon [see, e.g., LAMB (1932) or DEFANT’S article in Vol. XLVIII of this Ency- 
clopedia] . 

The mathematical justification for this shallow-water expansion method, at 
least for special cases, lies in the existence proof of FRIEDRICHS and HYERS 
(1954) for the solitary wave, and the existence proof of LITTMAN (1957) for the 
more general cnoidal waves. Both of these proofs demonstrate that this expan- 
sion method converges to the exact solutions for these particular problems. 

The nonlinear first approximation given by (28.1) is considerably simplified 
if the rigid bottom surface k (x, Z) is flat and horizontal, as may be seen by letting 
k = const so that (28.1) may be written as 

u~+uu,+wu,=-g(~l+~)x, 

w,+uw,%+ww,= - s(q +fq,, 

I, 

(28.2) 

bl + wt + [ubl + NIX + [w bl + WIZ = 0. 
This is identical to the well known two-dimensional gas-dynamics equation [see, 
e.g., LAMB (1932)] if we write 

@(X, 2, t) = [17(x, 2, f) + hl, 
YB - ca = 
a- 

ca (28.3) 
@ e r+h 

=g=const. 
1 

Since the isentropic gas relationship is p = const x $‘, the first-order nonlinear 
shallow-water approximation for a flat horizontal bottom is identical to the isen- 
tropic two-dimensional gas flow having a specific heat ratio of y = 2. This is the 
basis of the so called hydraulic analogy which has been used for many experi- 
mental investigations [see, e.g., STOKER (1957)]. 

It must be noted, however, that this hydraulic analogy is only valid for a 
flat horizontal bottom, as may be seen by comparing (28.1) and (28.2), and 
even more important, it is valid only as a first approximation even for the non- 
linear case. It will be shown in Sect. 31 that the second approximation to shallow- 
water theory yields finite-amplitude waves (the solitary wave or cnoidal waves) 
which can be propagated without a change in shape or form, a fact which com- 
pletely invalidates the hydraulic analogy to compressible gas flow since (28.2), 
or the gas dynamics equation, predicts that any finite disturbance quickly 
forms a finite discontinuity, e.g. [see, e.g., LAMB (1932), pp. 278, 481)]. 

In Sect. 29, immediately following, it will be shown that even for the linearized 
first approximation the hydraulic analogy to compressible gas flow is limited to 
a flat horizontal bottom. 

29. The linearized shallow-water theory. The first approximation to shallow- 
water theory can now be linearized by two different methods, each suitable for 
various problems. We shall assume that u, =wx, so that a velocity potential 
@(x, x, t) exists. The first method is more appropriate for investigating steady 
water flow in canals or rivers and consists of the following approximations for 
carrying out the linearization : 

u(x,z) = u+fpzw u, W(% z) = q&<< u, (29.1) 
17(“,.4<k(%4, (29.2) 
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