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respectively. Define 

r(Z) =+[u(x) +b(x)], s(Z) =+[24(z)-b(z)], (20.30) 

so that now the top and bottom are given by 

y=-h+r(z) +s@) and Y=-Jz+r@)-s(Z), -a~Z~a, (20.31) 

respectively, The class of gofiles in a form analogous to (20.23) is now given by 

Y=--+&[~(l)(~)~s(l)(~)], -asZga. (20.32) 
It is clear that as E -to, the profiles approach the line segment y = - 12, 0 5 X =( a, 
so that the perturbation procedure is allowable. The analysis leads to the line- 
arized boundary condition 

~&,-hzko,t) =-c(t)r’(x--c(Z,dz)fc(t)s’jx--cc(z)dz), (2033) 
t 

- ag’x-JcdtSa. I * 
The slender-body a$$roximation is also consistent with the linearized free- 

surface condition. Let the body be defined by 

(~+h)2+22-~2(%) =O, I?il<a, h>O, (20.34) 

in a coordinate system fixed in the body. If one considers the class of bodies 
defined by &r@!(Z), then the appropriate condition to be satisfied by O(l) is 

!‘_mo~i)(~-~c(~)da,--h+ er(l)cos$,~r(l)sin~)r(l)(x-Slcdt) = -c@O’. (20.35) 

We note that the same problem may be approached by two linearized theories. 
For example, in approximating the flow about a hydrofoil, one may either con- 
sider it as a relatively deeply submerged body and satisfy the exact conditions 
on the surface, or consider it as a thin hydrofoil and use the conditions (20.33). 
Each method will have its own domain of excellence, but it is not proper in the 
present context to say that the thin-hydrofoil approximation is less exact than 
the other one, even though this is true in an unbounded fluid. 

The N-functions. KOCH&S H-function, introduced in Sect. 19a, may also 
be used effectively for the flows considered in the present section. The definition 
for three dimensions is identical in appearance with (19.14). For two dimen- 
sions (19.21) isreplaced by 

H(k) =Jeeihcy([) d[. (20.36) 
Cl 

However, the formulas for the force on the body are somewhat different. For 
three dimensions they are 

an 
X = - 4$SIH(vsec28,6) I2 sec36d6, 

-an 

Z = - 2 /*[H(v sec28,8) I2 sec*6 sin 8 d8, 
-in 

Unknown
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574 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 20. 

where Y is the displaced volume of fluid and Y =g/c2. The two-dimensional for- 
mulas are 

0 -m 

M=-ggAx,-~cRe{iH’(o))--Re &fW(h)B(k)dk-/- 
i 0 

-- 
+ YH’(Y) H(v) + Jff PV jb(v - kv) H(v - kv) q ,- 

-co 

(20.38) 

where A is the area of the profile, (x,, y,) are the coordinates of its centroid, and 
P is the circulation. The remarks made in Sect. 1% concerning the use of the 
H-function apply also here. 

Submerged circular cylinder. The appropriate linearization for the 
circular cylinder is the one associated with deep submergence. Hence, one must 
try to satisfy the exact boundary condition on the cylinder, 

This problem has been treated by LAMB (1913 ; see also 1932, $ 247), 
HAVELOCK (1927, 1929a, 1936), SRETENSKII [1938), who considers also finite 
depth, KOCHIN (1937) and HASKIND (1945a), who applies KOCH&S methods for 
finite depth. COOMBS (1950) considers the flow about a pair of submerged cylin- 
ders, and, as a preliminary, also about a single cylinder; numerical computations 
are carried though for two cases, one with the centers on a horizontal line and one 
with them on a vertical line. COOMB’S method has wider applicability than just 
to circular cylinders. In all the cited papers, with the exception of HAVELOCK’S 
and COOMBS’, the problem is solved by placing at the center of the circle a dipole 
modified to satisfy the free-surface condition, i.e., (13.45) with a =O and M = 
2nca2, where a is the radius and c the velocity [the c of (13.45) is taken as --ilz, 
F, the depth of the center]. This provides, of course, only an approximate solution, 
for in the presence of a free surface a dipole in a stream no longer generates a 
circle, as is testified to by the fact that the contour actually generated is subject 
to a moment. HAVELOCK (1927, 1929a) gave second approximations for drag 
and lift and later (1936b) a complete solution. 

The problem may be treated by a combination of MILNE-THOMSON’S Circle 
Theorem (1956, p. 151) and a formula of KOCHIN’S. The former states that if 
f(z) is the complex potential for a flow with its singularities all at a distance greater 
than a from the origin and with no solid boundaries, then 

f(x) i-i($) (20.3 9) 

is the complex potential for a flow with the same singularities but now with a 
circle of radius a and center at the origin situated in the fluid. 

KOCHIN (1937) has proved that if f ( ) z is a single-valued complex potential 
for a bounded contour C under a free surface, then 

where C, is any contour in the lower half-plane containing C. The formula and 
its proof are almost identical with that given in (17.15). The first integral in 
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(20.40) represents a function regular everywhere outside C, the second integral 
a function regular everywhere in the lower half-plane. If one starts with a func- 
tion f(z) whose only singularities are contained inside C, then the operation 

(20.41) 
where 

yields a complex potential function satisfying the free-surface condition and 
having the same singularities as f in the lower half-plane. 

On the other hand, if one starts with a complex potential f(z) whose only 
singularities are in the upper half-plane, then 

f + %Q {f} (20.43 ) 
where 

m{fj=?($.~+ih) $ich, a<h; (20.44) 

will be a complex potential for a flow about a circle of radius a and center --ilz 
and with the same singularities as f in the upper half-plane, the singularities of 
rrJl{f} being all inside the circle. 

We start with the flow fo(z) 7 - cz representing a uniform flow from the 
right; the free-surface condition is satisfied for y =O in a trivial manner. Now 
form the sequence 

fop fi = ‘a {fo>t fz = R{f>, ~~~~ fza+l - m {fzn>, fzn+t = R{fs,c+d, aas a (20.45) 

Then fo+fi, fz+f3, f4+f6,. . . each represent flows satisfying the boundary con- 
dition on the circle; hence, also their sum if the series converges. On the other 
hand, fo9 f,+fzp f3+fcj.. . each represent flows satisfying the free surface con- 
dition, and, hence, also the sum if it exists. 

Let us now consider the two operators %Q and B. %Q is always being applied 
to a function regular ‘and bounded in the lower half-plane. Since a2 (x +ih)-l+ ih 
maps the exterior of the circle on to the the interior, the maximum of 1 m{f}( 
for x in the lower half-plane does not exceed that for 1 f 1 within or on the circle. 
We write this as 

I %J? if> I 5 llfll = my If I . (20.46) 
In particular, 

llfzntlll 5 llfznll * (20.47) 

The operator Q is always applied here to functions regular everywhere outside 
and on the boundary of the circle. Hence C, may be contracted to C and one 
can establish the following estimate for z in the lower half-plane: 

lQ{f~l5ayx IfI [-- IA 
+2nveV(Y+~)+2ve v(~+VWl~ +TI)I] 

5 a 
[ 
-&; + 2nv e-v(h--a) + 2v e-v(h--a) Ei (V (JJ - a))] mpx j f 1 (20.48) 

5 K llfll J 

See separate file errata.pdf
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where in the second inquality k must be large enough that v(Jz-- a) >0.4. For 
fixed values of va one may select h/a large enough so that K is as small as one 
wishes, in any case, less than 1. Thus, in particular, 

Ilfifi+i II 5 llfz~ll 5 IT llfoll * 
From this it follows easily that the series 

fo + fi + f2 + *** + fzn + f&z+1 + *-- (20.51) 

with terms defined by (20.45) converges uniformly in the part of the lower half- 
plane exterior to Ix filzl <a. 

One may extend the method to flows about more general cylinders by combin- 
ing the operator %R with another defined in terms of conformal mapping of the 

given profile into a circle. The 
procedure carried through above is 
a natural generalization of the pro- 
cedure used by HAVELOCK in his 
first two papers (1926, 1929a) to 
find the second approximation. 

Pig. 19. 

/j 
However, in his later paper (193913) 
he used a different procedure, one 
which has also been used by URSELL 
in analogous problems. This consists 
in expressing the potential as a 

sum of multipoles situated at the center and, of course, already modified so as 
to satisfy the condition on the free surface and as x+ 00. This leads to an 
infinite set of equations for the coefficients. The method is quite suitable for 
approximate computation. 

After computation of H(K), the formulas (20.38) can be used to find the force 
and moment. In the computation of H only the terms with odd indices contribute. 
This leads to a considerable saving in effort. For example, if one had approximated 
the flow by the first three terms of (20.51) and computed the force by integrating 
the pressure over the cylinder, the result would be the same as that obtained 
by using the H-function evaluated for fi alone, and without the need of finding fz. 
HAVELOCK has frequently made use of this device without specifically introducing 
the H-function. Fig. 19 from HAVELOCK (1936b) shows R = -X and Y plotted - 
in units of ngea2 with abscissa I/IX& for a//z = $. The curves labelled RI and Y1 
give the result when only the first approximation is used, i.e., 

H(k)= 2ncaa2K eehlt 

R,=nega2.n T ( a)a(Z$!L~e-2~hl~2, 

t 

(20.52) 

Computation of M gives, on this approximation, the anomalous result 
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In the formula for Y the terms resulting from buoyancy and circulation are 
omitted. HAVELOCK (1928b) has investigated the form of the surface over a 
moving dipole, i.e., over a sphere to the same degree of approximation. 

Some submerged three-dimensional bodies. The flow about submerged 
ellipsoids and bodies of revolution in general has obvious interest in connection 
with the wave resistance of submarines. As a result there is a considerable 
amount of both theoretical and experimental work available, and even some 
tables for computation of wave resistance. Most of the theoretical work does 
not go beyond the approximation in which one represents the body by the sin- 
gularity distribution appropriate to an unbounded fluid, but with the potential 
function for the singularity modified to satisfy the conditions on the free surface 
and at x = -k 00. Thus, to find the flow about a submerged sphere one will in 
this approximation use a modified dipole with axis in the direction Ox and 
moment ica3. One should realize, however, that the boundary condition on the 
body appropriate to deep submergence has not been satisfied. The necessary 
refinements could be carried through for the sphere in a manner similar to that 
used for the circular cylinder. Since the sphere (and even more, the circular 
cylinder) is a poor shape to which to apply perfect-fluid theory, such a computa- 
tion is of only moderate interest. Both POND (1951, 1952) and HAVELOCK (1952) 
have considered methods for improving the accuracy with which the boundary 
condition on bodies of revolution is satisfied. This is particularly important in 
estimating the moment. about the transverse horizontal axis, but, as POND shows, 
of less importance for the wave resistance. 

HAVELOCK (1931 a) treated by the approximate method the wave resistance 
of prolate and oblate spheroids moving both along and at right angles to their 
axes. Later (1931 b) he extended the results to general ellipsoids moving inthe 
direction of the longest axis. WEINBLUM (1936) has considered bodies of revolu- 
tion using the slender-body approximation, but satisfying it only in the approxi- 
mate sense described above: his aim was to find forms of minimum wave resist- 
ance. WEINBLUM (1951) returned to the problem, taking up in particular numerical 
computation of the wave resistance for a given shape. Tables and graphs are 
given to facilitate the computation for certain classes of bodies. Experiments 
were made by WEINBLUM, AMTSBERG and BOCK (1936) on three forms at several 
depths. Presumably, more recent experiments exist whose results are not publicly 
available. A general survey of the theory may be,found in BESSHO (1957). 

If one has once computed the function H(k, 6) for a source and a dipole, it 
is usually straightforward to compute it for bodies generated by distributions of 
sources and dipoles, and hence to compute the force. Let S, be a surface con- 
taining a single submerged source of strength m at the point (a, b, c), b < o [i.e., 
(13.36) multiplied by -m] ; one finds 

H(k, 8) = dnrn ekb e~kbcos~+csin~)~ (20.53) 
For a dipole of moment M in the direction Ox one finds 

H(k, 6) = 4~ i &’ k ekb eik(acos@ t -in*) ~0s 6. (20.54) 
These may now be superposed as necessary for either discrete or continuous 
distributions. Thus, if we write G(x, y, Z; 5, v, [) for the function (11.36) with 
(a, b, c) replaced by (5, ‘I, 5), and if we can express q for some problem by 

y = i/y (6, q> 5) G (x, Y, 2, E, rl, 0 da, (20.5 5) 
then [cf. Eq. (19.20)] 

H(k, 8) = - 47c{J ehq &k(Ws@+EsinN y(e, 7, [) do. (20.56) 
Handbuch der Physik, Bd. IX. 37 
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Prolate spheroid. We give an example of the preceding remarks. A prolate 
spheroid of major semi-axis a and minor semi-axes b moving with velocity c 
in the direction of its major axis can be represented in an unbounded fluid by a 
distribution of dipoles of moment density 

f,l ([) = A c (a2 e2 - cp) , 151< ae, (20.57) 
where 

&11_4e_-210g.l+e 
1 - e2 l-e ’ 

82 G I- -!?T 
a2 ’ 

placed along the major axis between the two foci. Hence with the center at depth 
h one has in this approximation 

ae 
H(k 8) =4niAcke-khcos9.9 SC 

a2e2 - 62) eiktcosSa~ 

--Be 

=81i~~iAc(aeiR~~o~~~(aekcosB). 
I 

(20.58) 

Substituting in the first formula of (20.37) one finds 

1 
Tz 

.?? = -X = + 1287cevc2a3e3A2 e-zYhseCPQ [Jg(aevsec$)]2sec2&d8. (20.59) 
0 

Fig. 20 from HAVELOCK (1931 a) shows a graphical presentation of R/n~ab3 for 
spheroids with various ratios of a/b and for F, = 2 6. In comparing the different 

curves one should keep in mind 
the selected vertical scale ; one 
based on displaced fluid, i.e. 
R/Qnegab2, would give the 
comparison a different aspect, 

As mentioned earlier, it has 
been shown by both POND and 

Fig. 20. 

- HAVELOCK that this approxi- 
mate treatment of the boundqry 
condition on the body is in- 

1 adequate for computation of 
the moment. Fig. 21 is from 
POND (1951, 1958) and shows 
the computed moment about 

the center for a Rankine ovoid, i.e., for the body generated in an unbounded 
fluid by a source and sink of equal strengths moving in the direction of their axis. 
The dashed curves show the result with the approximate computation; the solid 
curves were computed by a method in which the boundary condition on the 
body is more closely satisfied. The length 2 of the body is 10.5 times the maxi- 
mum diameter d =2b. A positive moment is nose-up. 

Slender bodies. It is known that, for bodies of revolution given in the form 
(20.34) the slender-body boundary condition (20.3 5) can be satisfied in an infinite 
fluid by a distribution of sources along the axis of strength density 

744 =+c~,yx). (20.60) 

If one assumes that this same distribution of the modified sources (13.36) will 
satisfy approximately (20.3 5) then 

(20.61) 
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and 

H(h,8) = -43~-k”~eik~cosa~(5) a(. 
--a 

From this one finds easily from (20.37) 

R=-X 

(20.62) 

1 
42 

= 16ne~“Sd6sec36e-2vhSec”~ 
0 

where 

P(G) = Jay ([) cos (v 5 set 6) d 5, Q (6) = fy (E) sin (a~ E set 6) d{. 
--a --a 

As mentioned earlier, WEINBLUM (1951) has published tables allowing one to 
compute R for y-s representable as certain polynomials. An earlier paper (1936) 
considers the .minimization of R 
among certain classes of polynomial 
y-s. POND (1952) treats the neces- 
sary refinements to (20.61) in order 
to compute the moment. CUMMINS 
(1954) finds the additional effect of 
a train of waves on the surface. 

Thin ships. Let the equation of 
the hull be given as in (20.22) by 
z = &F (x, y) in a coordinate system 
moving with the ship which we 
take to move with constant velo- 
city c in the direction Ox. If we 
assume that a steady state has been reached, the boundary condition for the 
hull appropriate to the thin-ship approximation is, from (20.26) with @(x, y, x,t) 
= y (x - ct, y, x) and a change to amoving coordinate system, 

94(%YLtO) =rW%Y) (20.64) 

for (x, y, 0) in S,, the centerplane section of the ship at rest. For (x, y, 0) not in S, 
one has Q)*(x, y, -&to) =0 from symmetry considerations. ~1 must, of course, also 
satisfy (20.1) and the condition of vanishing motion as x+-co. 

The boundary conditions may be satisfied immediately by distributing sources 
(13.26) over S,. If we again denote the potential function in (13.36) by G (x, y, z; 
E, ye, [), then, for infinitely deep fluid, the solution is 

(20.65) 

This follows easily from known theorems in potential theoryr. (The part of G 
regular in YSO does not interfere with the satisfying of (20.64) since the x-deri- 
vative of these terms vanishes for x = 0.) 

The quantity of chief interest is the resistance resulting from the waves. 
This may be computed by using again (20.56) and (20.37) (and remembering to 

l See, e.g., 0. D. KELLOGG: Foundations of potential theory, pp. 160- 166. Berlin: Springer 
1929. 

37” 
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take account of both halves of the hull), or by direct integration of the pressure 
over the hull after taking account of linearization, i.e. 

I;:=2ecSSa7x(X,Y,O)F,(x,Y)dxdY. (20.66) 
SO 

If the latter form is used, only the single-integral term in G gives a non-vanishing 
contribution. In either case one finds immediately, again for infinitely deep fluid, 

42 \ 
R = s J sec36 [P (8) + Q2.(8)] 0, 

p =LPG Y) evYsecP’ cos (v x set 6) dx dy , (20.67) 

Q =+(F Y) evysec’@ sin (v x set 6) dx dy . 

The result may be, and has been, put into a variety of different forms by change 
of variable and order of integration. We give one of them. Let A =sec 6. Then 
one may verify that 

This expression for R in terms of the hull form and velocity was first given by 
MICHELL (1898), but derivations by different methods have since been given 
by many other, e.g. HAVELOCK (1932, 1951), SRETENSKII (1937), KOCHIN (1937), 
LUNDE (1951), and TIMMAN and VOSSERS (1955). It is usually called “MICHELL’S 
integral “, 

Because MICHELL’S integral gives R directly in terms of the hull geometry 
it has been intensively investigated by several persons in order to throw light 
upon the influence of variations of hull form upon wave resistance. Foremost 
among these investigators has been HAVELOCK, who in a series of notable papers 
(1923, 1925a, b, 1926a, 1932a, b, 1935) studied the effects of various systematic 
variations described by the titles of the papers. Much of this work is summarized 
in HAVELOCK (1926). In addition, there are numerous papers by G.P. WEIN- 
BLUM and W.C. S. WIGLEY devoted to comparison of experiment and theory. 
One can find surveys of much of this and related work, as well as further biblio- 
graphy, in WIGLEY [1930, 193.5, 1949), WEINBLUM (1950), HAVELOCK (15X1), 
LVNDE (1957), and WEHAUSEN (19579, LUND&S 1951 paper contains derivations 
of practically all the general theoretical results, including the effect of finite depth, 
walls, and acceleration. TAKAO INUI (1954) has given an extensive survey of 
Japanese investigations on wave resistance and related topics, and in a later 
paper (1957) a complete survey. 

In order to allow better exploitation of MICHELL’S integral much attention 
has been given in recent years to its numerical computation. One can find a 
general discussion in BIRKHOFF and KOTIK (1954)) and ,various special proposals 
in KABACHINSKII (1947), REINOV (,l951), GUUXOTON (195 1) and WEINBLUM 
(195 5). The last two papers both contain sets of tables to be used in evaluating 
MICRELL’S integral. 

In making a comparison of the theoretically predicted wave resistance with 
measured wave resistance one must examine critically the experimental method 
for estimating the wave resistance. The standard method consists in measuring 
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the total resistance, estimating the part of the total resulting from the effects 
of viscosity, and attributing the difference to wave making. Thus the accuracy 
of the experimentally estimated wave resistance depends upon the accuracy of 
the estimated viscous resistance and upon the validity of the assumption that 
the two may be added. In the case of a very thin body this estimate can be made 
accurately and, in addition, the physical assumption in the thin-ship lineariza- 
tion is well realized. Fig. 22 from a report by WEINBLUM, KENDRICK and TODD 
(1952) shows a comparison between estimated and computed values of R,IQQc~ S 
for a towed “friction plane” 21 feet long with parabolic ends and 3 foot draft. 
These experimental data present MICHELL’S integral in a most favorable light. 
For more ship-like forms the separation of viscous from wave-making resistance 
is more difficult and the compared 
values seldom show such striking 66” mu ““I 

quantitative agreement, although 
it is still fair in many cases. We 

,5 vf 
1 

call attention to the fact that o 0 
r,=R#/ps 

MICHELL’S integra1 predicts the 
e[$$)~, 

R,-h%wf~~wpvp 
misfffnn 0 

same wave-making resistance no bpeflheof curve S- Mffed 

matter in which direction the ship 
o mea 

moves. 
So far we have discussed ’ 

45 
d-@ 

49 

vessels moving in an infinitely Fig. 22. 

deep fluid. However, if for our 
function G we had taken (13.37) instead of (13.36), the same analysis would 
have led us to the following expression, first’given by SRETENSKII (1937) : 

R = 2~jiWp~ + Q"lu)ll/,-I;t",,,,,,dp, 

34 =J-JG Y) 
cod P (Y + h) coshph cos(xliptanh,uh) dxdy, ) (20.69) 

so 

Q(p) -/cF,(x, y) *Ppsin (X]li,utanh,uh) dxdy. 
SO I 

Here ,u,, is the nonzero solution of ,u =v tanhph if such exists, i.e. if c2/gt%>l; 
otherwise ,uh = 0. As h-+ 60, ,LL~-+v and one obtains one of the forms of MICHELL’S 
integral. 

An expression for the wave resistance of a thin ship moving down the center 
of a rectangular canal was derived independently by SRETENSKII (1936, 1937) 
and KELDYSH and SEDOV (1937). The result may be found in LUNDE (1951). 

One may naturally ask how the wave pattern illustrated in Fig. 1 for a mov- 
ing source is related to that for a ship. In the thin-ship approximation, the ship 
is replaced by a distribution of sources on the centerplane, so that each infinitesi- 
mal area of the centerp1an.e contributes to such a pattern according to its strength. 
However, in many large vessels the middle part of the ship is cylindrical, so that 
F, = o in this region and only the bow and stern regions contribute a nonvanishing 
source density. Thus, if one replaces the ship by a single source in the bow region 
and a single sink in the stern region, the resulting wave pattern will approximate 
to that of a ship, the approximation ‘being better at higher values of the Froude - 
number c/fgL, Depending upon the value of c/vgL, the transverse wave systems 

Handbucb der Physik, Bd. IX. 37a 
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from the two singularities may either reinforce or partially cancel one another. 
When they are in phase, a larger amount of energy is being left behind in the wave 
system and the resistance curve shows a maximum, when they are out of phase 
a minimum, the so-called “humps and hollows” of the resistance curve; these 
show clearly in Fig. 22. Replacing the ship by a source and sink is, of course, 
a gross simplification. However, it serves to explain qualitatively certain aspects 
of a ship’s wave pattern and resistance curve, and, in fact, can be given a certain 

Fig. 23. Ship WBYBS. 

amount of validity as an approximate computation of MICHELL’S integral for 
sufficiently large c/l& For very large values of c/j/g.L, the wave length of 
the transverse waves along the path, 2nc2/g, becomes much larger than L and one 
may approximate the ship by a dipole. Many photographs of the wave pattern 
made by a fast motor boat fall into this class. The photograph reproduced in 
Fig. 23 shows clearly the diverging waves from the bow and stern, a third set 
possibly originating at the forward shoulder, and also the transverse waves, which 
presumably are here nearly in phase. 

The angular opening of the wedge containing the wave pattern should be, 
according to (13.42) and Fig. I, 38” 56’ in deep water. This is confirmed only 
approximately in photographs; difficulty in determining boundaries makes pre- 
cise confirmation difficult. For ships moving in water of finite depth F, the 

J.  N Newman
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angular opening changes as shown in Fig. 2, and for supercritical velocities, 
i.e. c2>gh, there are no transverse waves. 

JINNAKA (1957) has recently published a brief survey of the theory of ship 
waves. 

Thin hydrofoils. We take the hydrofoil as described in (20.29) and treat 
the problem two-dimensionally. Assuming constant velocity c and steady 
motion and taking our coordinate system moving with the hydrofoil, the boundary 
condition (20.33) becomes 

c&(x,-h&O) --cr’(x)~cs’(x), --a<x<a. (20.70) 

This problem has been treated very thoroughly by KELDYSH and LAVRENT’EV 
(1936). They follow a procedure quite analogous to that used in Sect. 19cr to 
find the waves generated by a vertical oscillator not in a wall. Distribute vortices 
of intensity y(x) and sources of strength a(x) along the line - a < x< a, y = - h, 
but taking them, of course, modified as in (13.43) in order to satisfy the free- 
surface condition and the conditions at infinity. To start with, we take o(x) = 
- ~cs’(x). It then follows from the theorem of PLEMELJ-SOKHOTSKII [cf. 
Eq. (17.18)] that 

py(x,-h+O)-py(X,-h-o)==-2cS’(X), (20.71) 

a step toward satisfying (20.70). W e now look for a complex potential in the 
form 

f(z) =Pr-zcs’(5)f,(2;E-ili) +y(59fu(~;t-iwl@, (20.72) 
--u 

where we have separated the source and vortex potentials in (13 4). The bound- 
ary condition (20.70) now yields an integral equation for y(x) in much the same 
manner that (17.18) was derived: 

Im~~[-2cs’(E)i:(~-ih; 5--ih)+y([)fL(x--ih; [--irZ)] @=cr’(~), 

-a<x<a. 1 . 

(20 73) 

Noting from the third expression in (13.43) that f, and f,, are functions of the 
difference x - 5, we define 

x 

2nifj(x--ik,-ii)=i +-da 
1 J 

-2vewivx 
J' 

&&at 

=ff(x) +iJ(x), w 

Here, for example, 

The integral equation (20.73) can now be written in the following form: 

2ncr'(x) +JG2cs'(~)H(h.-~)d5, (20.74.) 
--a 

where the right-hand side is a known function, 
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This integral equation is the hydrofoil analogue of the thin-wing integral 
equation of airfoil theory: 

a 

*j-Y (4 *“E = - 2ncr’(x). 

--a 
(20.75) 

In the latter equation the kernel is simpler and in addition only the function Y’ 
describing the camber and the angle of attack occurs on the right side. Since 
the wing thickness does not enter into the determination of y in (20.75) it may 
be neglected, for only y is needed to find the lift. The situation is clearly different 
for hydrofoils. Even a symmetric wing with zero angle of attack may have a 
circulation, and hence lift. This is a consequence, of course, of the presence of 
the free surface and the associated wave motion. 

KOCHIN (1936) has also considered hydrofoils, but from a somewhat different 
viewpoint. He has essentially used the “deep-submersion” linearization described 
first in this section. Thus he must satisfy the exact boundary conditions on the 
wing as well as the Kutta-Joukowski condition. However, one cannot say here, 
as one could for an infinite fluid, that his method is more exact than that of 
KELDYSH and LAVRENT’EV. Their approximation is more accurate the thinner 
the wing, for a given submersion. KOCHIN’S is more accurate the deeper the 
submersion, for a given wing. 

Eq. (20.74) is not sufficient to determine y(x) uniquely. One must still add 
some further condition. We shall assume a finite velocity at the trailing edge, i.e.. 

q+a-0, -h) ==[[y(E,K(-a--t) -2cs’(%)H(-a-8 dE finite. (20.76) 

KELDYSH and LAVRENT’EV propose solving the integral equation (without 
actually proving that a solution exists) by expanding K, H and y in a power 
series in z = ajvh and then determining recursively the coefficients. Let 

Then (20.74) gives the following sequence of integral equations. 
a 

s Yo 0) 2s- x-6 
= - 2XCY’(X), 

--a 
a 

.I Yl (E) L x-5‘ == +H,jzcs'(E) d5 =O, 
-a --a 

--a 

. . . . . . . . . . . . . . . . . . . . . . . . . . . > a (20.78) 

.f -a,:i-Hs&zs'(b) (x-t)‘d5- 

- ~~a&K,~y(t, b-E)% 
k+l=s --a 

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . . I  
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This procedure has the obvious advantage of reducing the solution to the airfoil 
integral equation for which an explicit solution satisfying the trailing-edge 
condition is known. If we denote temporarily the right-hand sides of the 
Eqs. (20.78) by F,(x), respectively, then the general solution is1 

where the value of ivll dE is undetermined. In terms of the series expansion, 

condition (20.76) sta:es that 

must remain finite for x+ - a. We assume s’(- a) finite. yk may possibly have 
a singularity of the form l/j/a + x near x = - a. However, the integral 

is a polynomial in x for 12 0. Thus the last two summations of (20.80) remain 
finite at x = - a. However, the first summations potentially contributes terms like 

a 
dl 

J’-----------= - --a (x - E) p* - E2 &$ ’ 

In order to avoid this singularity at x=-a, we select the total circulation 

fy,& d5 so that 
--a a 

s 
y,([)(,Q= -; 

s 
hu!$+. (20.81) 

--a --a 

Substituting into (20.79), one finds finally 

y,(x) = f pJ<(E) pF;- *. (20.82) 

--a 

y(x) itself is given by the sum displayed in (20.77). Although the singularity 
at the trailing edge has been removed, there is still one at the leading edge; this 
occurs also in thin-airfoil theory and corresponds roughly to the fact that the 
conditions of linearization (i.e. of small disturbance) are not satisfied near the 
leading-edge stagnation point. 

KELDYSH and LAVRENT’EV compute the integrals which will be necessary if 
Y(X) and s(x) are given as polynomials and apply their computational method 
to a flat-plate and circular-arc airfoil at a small angle of attack. 

1 See, e.g., W. SCHMEIDLER: Integralgleichungen . ,, pp. 55 - 56. Leipzig: Akademische 
Verlagsgesellschaft 1()50. 

See separate file errata.pdf
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In order to find the force and moment on the wing it is convenient to fall back 
on the H-function. One finds easily 

H(k) = e-““J[y(E) -- 2ics’(E)] e-iasds, 

1 H(k) I2 = e-2;;! j{[y (l) y(x) + 4c2s’(t) s’(x)] cos k(t - x) + (2033) 
---a --a 

+ 2c[y(t) o’(x) -y(x) o’(t)] SinhO - x)}@dx. 1 

Formulas (20.38) allow one to complete the calculation for special cases. 
The theory analogous to that described above for fluid of finite depth h, 

has been carried through by TIKHONOV (194.0). He has applied the method to 
calculate the lift and drag coefficients for a flat plate at a small angle of attack. 

Rather than reproduce the graphical presentations of KELDYSH and LAVRENT’BV 
and TIKHONOV for the flat plate, we shall give instead the lift and drag coefficients 
for a submerged vortex. Here one may give relatively simple analytic expressions, 
and the qualitative behavior of the curves is similar to that of a flat plate. The 
formulas for lift L and drag D are as follows: 

D, = pvP e-2Yh, 

L 00 = prc-x!r~+c!!ve- 
4nh n 

2yhEi(2vh), 

if vh,,>l, =O if vh,<i, ’ (20.84) 

where m,, is the real root of m = v tanh mho. For finite depth the expression for D 
stems from the last term in (13.47). The dimensionless coefficients CD= Dh/er2 
and CL= (L -@CT) h/p are shown in Fig. 24a for infinite depth as functions 
of c2/gh and in Figs. 24b and c as functions of c2/gh0 for various values of ,!3 = 
h/ho. For infinite depth CL starts with a value 1143~ and tends asymptotically 
to - 1/4~, crossing the axis at c2/gh=2.47. For finite depth the coefficients 
have a discontinuity at c2/ghO= 1. As c2/g ho+o, C,-+O, and as c2/ho-+ 1, 
CD+%/3 (1 - /3)“. For c2/gho> I, C, is always negative and increasing with a verti- 
cal asymptote at c2/gho= 1 and a horizontal one as cz[g ho-+ CO at - /3/4 sin /In ; 
these curves start at i/3 cot /In. 

Further development of hydrofoil theory has taken place in several directions. 
HASKIND (1945 a) has extended KOCHIN’S “deep-submersion” theory to water 
of finite depth. However, he does not discuss the steps necessary for fulfilment 
of the Kutta-Joukowski condition, as does KOCHIN. The lifting-line theory for 
airfoils of finite span has been extended to hydrofoils by WV (1954), BRESLIN 
(1957), and HASKIND (1956). PARKIN, PERRY and WV (1956) and LAITONE 
(1954, 1955) have investigated both theoretically and experimentally the effect 
of bringing a given hydrofoil so close to the surface that the infinitesimal-wave 
approximation breaks down completely. There exists also a considerable amount 
of work on flow about cavitating hydrofoils. However, since the effect of gravity 
is neglected, this work is not considered in the present article. Experimental 
data relevant to the theoretical development outlined above are scanty. Reports 
by BENSON and LAND (1942) and by LAND (1943) give results of an experimental 
investigation of the effect of depth of submersion. However, the investigations 
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were not designed to test the validity of the theory and do not, for example, 
include the region of maximum C, . AUSMAN (1953), in connection with an 
experimental investigation of the pressure distribution on the upper surface of 
a hydrofoil, measured the lift coefficient and compared it with that predicted 
by the thin-hydrofoil theory. The theory failed when gtS/c2 became too small 
because the associated free surface over the hydrofoil no longer approximated 
infinitesimal waves, or, in other words, the thin hydrofoil was not thin enough 

Fig. 24 a-c. 

for these values of ghlc2 for the theory to be applicable. It should also be empha- 
sized that for small values of ghlc2 the occurrence of cavitation on the upper 
surface must be taken into account for a complete theory. Recent measurements 
by NISHIYAMA (1959) show good agreement even for small values of gJt/c2. A 
comprehensive survey of hydrofoil theory is given in a recent paper by NISHI- 
YAMA (1957). 

y) Planing stiyfaces. The following discussion is limited to two-dimensional 
motion, for the theory of three-dimensional planing surfaces for flows with gravity 
does not appear to have been developed. 

For the linearized problem it is natural to consider the planing surface or 
glider as an approximation to a flat plate moving along the surface of the undis- 
turbed fluid, i.e. the curvature, angle of attack and vertical displacement are all 
assumed small. In order to formalize the perturbation procedure, let the planing 
surface be represented by 

y = kS F(x), 1x15 a, F(- a) =O, (20.85) 

in coordinates fixed in space, and let the fluid have velocity -c at x = + CO. 
Thus, we are going to consider the flow to be a perturbation of a uniform flow. 
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First let us consider briefly in a qualitative fashion the exact solution. There 
will be a stagnation point A somewhere behind the leading edge and a jet will 
be thrown out ahead of the glider. We take it to be of thickness b and to make 
an angle /I with OX. If @ = - c x + 91 (x, y) and !P = - c y + y (x, y) are potential 
and stream function, respectively, we shall take the free surface ahead of the 
glider to be given by K =- bc and behind the glider by !P = 0 (see Fig. 25). 
Then b/a, and AL/a will all be functions of ga/c2 and gk/c2. It will be assumed 
as one of the boundary conditions of the problem, in analogy with the Kutta- 
Joukowski condition, that the velocity is continuous at the trialing edge. It is 
obvious that the flow near the leading edge cannot conform to the requirement 
that it be a small perturbation of a uniform flow. However, we shall give argu- 
ments below to indicate that, except in the neighborhood of the leading edge, 

Fig. 25. length 1 and angle of attack 
01 gliding on a weightless 

fluid. This problem can be solved exactly [see, e.g., MILNE-THOMSON (1956, 
9 12.26); A. E. GREEN (1935, 1936)]. The asymptotic expression, for small IX, 

of both the ratios b/l and AL/l is t ‘2 __-, i.e. they are both of the second order. 
2 1 +cosp 

We shall suppose that this relation continues to hold when gravity is acting. 
We now carry through the perturbation procedure of Sect. lOa [see especially 

Eq. (10.16)], writing 

@z-cxf&(p$ . ..) yy-~y+$y,'l'+ . ..) q=q’l’+ . ..) 

h +F(x) =&F(l)(x) + &h(l)+ &2W)$ ‘..) (20.86) 
b = $2 $3 + . . . . 

Substitution in the exact boundary conditions then yields the following linearized 
conditions : 

$1) (x, 0) - 2” yp (x, 0) = 0 ) 
g 

Ixl>a, 

$1) (x, 0)  q -= c (h(l) + F(l)(x)) , 1x1 <a. 1 

(20.87) 

The free surface is given by 

$1) (x) = + y(l) (x, 0) = 4 f$p (x, 0) ) [xl> a. (20.88) 

We require as usual that the disturbance vanish as x+bo. One will expect that 
the behavior near the leading edge will reflect in some manner the inconsistency 
of the exact solution with the notion of a small perturbation. It will turn out 
that it will be necessary to allow a singularity at the leading edge. (Almost the 
same situation exists in the thin-hydrofoil or thin-wing theory since the stagnation 
point near the leading edge also prevents the flow in that region from being a 
small perturbation of a uniform flow.) A singularity at the trailing edge, 
although mathematically possible, has been specifically proscribed. The strength 
of the singularity at the leading edge and the elevation F, of the trailing edge 
will be determined as functions of gal3 in the course of solving the problem. 
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The problem as formulated above has been considered, for infinite depth, by 
SRETENSKII (1933, 1940), SEDOV (19379, KOCHIN (1938), and MARUO (1951). 
HASKIND has extended SEDOV'S analysis to finite depth (1943 a), and later (1955) 
has treated a glider moving on a wavy surface. Yu. S. CHAPLYGIN (1940) has 
apparently carried through a fairly comprehensive numerical analysis for a flat 
plate making use of SEDOV'S method of analysis [see SRETENSKII (1951, p. S3)]. 
SRETENSKII'S papers are expounded in terms of a flat plate, but the method 
clearly has wider applicability, as he remarks in his first paper. SRETENSKII'S 
1940 paper gives the results of rather extensive calculations for flat plates. MARUO'S 
paper is conceptually very similar to those of SRETENSKII, but his method is not 
quite as efficient for computation. However, he also gives computational results 
and includes a correction to take account of the failure of the linearized theory 
near the leading edge. More recently the problem has been considered again by 
authors unaware of the earlier work. SQUIRE (1957) has analyzed a gliding flat 
plate by a method similar to that used by SRETENSKII and MARUO. Certain 
integrals involved in this method have been tabulated by MILLER (1957). CUM- 
BERBATCH (1958) has used a method similar to SEDOV'S. Both authors add new 
results to the earlier work. 

Both SEDOV and KOCHIN introduce the complex potential f(z) = pl + iy and 
thereafter the function f’+ivf, v =g/c2. Although the two methods are not by 
any means the same, they have much in common with the treatment of hydro- 
foils given above. Consequently, we shall outline below the method followed by 
SRETENSKII. 

As a preliminary we need a result from Sect. 21 below. Suppose that a pres- 
sure distribution $ (x) ,which we take to be absolutely integrable, is given on the 
free surface. Then the complex velocity potential must satisfy 

Re{f’(x +iO) +ivf(~ +iO)} =&p(x), (20.89) 

and the free surface is given by 

Y =r(N =+f+o) =$qL(%O) -&P(x). 

The function f(z) which satisfies (20.89) and which vanishes as x+ 00 can be 
written in several forms, of which we select the following [see Eq. (21.38)] : 

(20.91) 
-co 0 -co 

The free surface is given by 

the reason for leaving y explicitly in the formulas will appear below. 
When a glider is moving on a free surface, the streamline y =c-ly (x, 0) will 

consist partly of free surface, where 9 (x) = 0, and partly of the wetted surface 
of the glider, where fi (x) is some unknown function. 
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Eq. (20.92) may then be written as the following integral equation 
unknown function p (x) : 

Jade p (6) PV f*ix ely dA + 
\ 

--a 0 

+ z J* (6) sinY(x--t)d[, 1x1 <a. 
--co 

Sect. 20. 

for this 

(20.93) 

Once fi(x) has been determined, one may substitute back into (20.92) in order 
to find the form of the free surface for 1x1 > a. 

It is possible to work directly with (20.93), and this is the procedure followed 
by MARUO. However, SRETENSKII differentiates twice with respect to x and adds 
v2 times (20.93). This yields 

a P(E) = ,; 9 (x) - ;;;;- +- PV s x-5 d% . 
-a 

Although this last equation is a necessary condition for fi (x), it obviously cannot 
determine it uniquely, for the last term of (20.93), assuring vanishing of the 
disturbance far ahead of the glider, was lost in the formation of (20.94). Thus 
one still has need for (20.93). Eq. (20.94) is essentially the equation derived by 
SRETENSKII. 

Let us now integrate (20.94) with respect to x from x = -a to x, and denote 

-la 

Then Eq. (20.94) becomes 

F’(X) -F’(- a) +va~~([)d~fv2h(~+a) =-VP(X) --~.I’-i-r-,-d~, (20.95) a P’(E) 

--a -a 

where an additive constant has been discarded since F, itself is an undetermined 
constant. Eq. (20.95) is just PRANDTL'S integro-differential equation for the 
circulation about an airfoil of finite span l. Thus known methods for solving the 
airfoil equation can be carried over to the study of this equation. However, the 
solutions themselves cannot be taken over directly, for different boundary con- 
ditions are impcsed: in the airfoil equation the unknown function is the circula- 
tion J’(x) and it is usually assumed that r( - x) =F(x) and J’( - a) =I’(a) = o ; 

1 See, e.g., N. I. MUSKHELISHVILI: Singnlar integral equations, Chap. 17. Groningen: 
Noordhoff 1953. 
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in the present problem P(x) is not necessarily symmetric and P( - a) = P’( - a) =o, 
but P(a) is not restricted except to be finite. The theory of the Prandtl integro- 
differential equation without the customary additional requirements associated 
with airplane wings has been developed by L. G. MAGNARADZE [Soobshch. Akad. 
Nauk Gruzin. SSR 3, 503-508 (1942)]. 

The equation can be solved by an extension of GLAUERT’S methodl. This 
is the method which has been used by both MARUO and SRETENSKII. However, 
each expands P’=fi rather than P in a Fourier series in order to obtain the cor- 
rect behavior at the two end points. Introduce the new variables 6 and y by the 
equations 

x=-acos6, E =- acosy 

and assume the following expansion for 9 (x) : 

ac,P(x) =+t- acos6) =a0tan+6+a,sin8++~~+a,sin126+~~~ 

+alj/a2---x2+..-. 
(20.96) 

MARUO substitutes (20.96) into (zO.93), SRETENSKII into (20.94). The latter, which 
seems less laborious, leads to 

a [F”( - a cos 6) + v2 F( - a cos 6) + v2h] sin 6 

=- vaa,(l-cos@)-va~a,sin8sinrc6-~flaa,sin+&. (20.97) 
n=l n=1 

We shall not discuss SRETENSKII ‘s further steps to determine the coefficients a,. 
However, they lead to expressions of the following kinds for the coefficients: 

a2n-1 = A2,-,av2h + B2n-1avao+ C2m-1, 
a 212=B2na~ao+C212, n=1,2 ,..., 1 

(20.98) 

where A,, B,, C, are functions of va. Substitution of the coefficients into (20.91) 
and into (20.93) differentiated once with respect to x and evaluated at x = - a 
results in equations of the form 

vh = Qlao + R,vh + S,, 
F’(- a) = Q2ao + R,vh + S,, I 

(20.99) 

where Qi, Ri, Si are functions of va; these equations may be used to determine 
vh and a, as functions of va. As long as a,+0 there will be a singularity at the 
leading edge. 

Once p(x) has been determined approximately, one can compute the lift, 
drag and moment about, say, the center. To the order of approximation appro- 
priate to the linear theory they are 

L =;$(x)dx, 
--a 

I R = f+, f’(x) dx, I --a 
(20.100) 

M =s”$(x) xdx. I --a 

1 H. GLAUERT: The elements of airfoil and airscrew theory, Chap. XI. Cambridge 1943. 
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For the flat-plate glider it is possible to give the following asymptotic expressions 
for these quantities when va+O. 

L=nap”u[l-va(n+;)] +O(v%z2logva), R=aL, 

M=-+~Qc2u[l -vU(R+jg] +O(v%z4logva). I 

(20.101) 

There were first given by SEIIOV, but are also derived in the papers by KOCHIN 
and SRETENSKII. 

Fig. 26 reproduces several of SRETENS- 
KII’S computed pressure distributions for a 
flat plate. The predictions of the linearized 
theory cannot, of course, be expected to be 

X 
7-i 

Fig. 26. 

accurate near the leading edge. MARUO has corrected his computed points in 
this region by using the exact theory for a weightless fluid. Both MARUO and 
SRETENSKII give further computational results which we do not reproduce. 
MARUO (4959) has also provided experimental confirmation of the predicted 
pressure distributions. 

21. Waves resulting from variable pressure distributions. In the situations 
considered up to now in this chapter the pressure at the free surface has been 
taken as constant. We now consider the result of allowing the pressure over the 
free surface to be a given function of both position and time. Otherwise the fluid 
is taken to be infinite in horizontal extent and to be either infinitely deep or of 
uniform depth JL The time variation in pressure will be limited to two cases. 
In Sect. 21 a a periodically varying pressure is considered; in Sect. 21/l the pres- 
sure is taken to move with uniform velocity; Sect. 21 y gives some references to 
a combination of these two. In Sect. 22 waves from pressure distributions will 
be considered again in connection with initial-value problems. Since the methods 
for finding the velocity potential are similar in most respects to those used in 
finding the velocity potential for a source, we shall, with one exception, give 
the results without proof. 

Just as in the cases of the stationary source of periodic strength and the mov- 
ing source of constant strength treated in Sect. 1jy, we must in the present 

See separate file errata.pdf
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situation impose boundary conditions at infinity in order to ensure a unique 
solution. The imposed conditions, namely the radiation condition and the 
vanishing of the fluid motion far ahead, respectively, are selected as being 
physically reasonable. However, one may proceed differently, derive formulas 
analogous to (13.50) and (13.51) and then find the limit as t--f co. The resulting 
velocity potentials automatically satisfy the correct boundary conditions at 
infinity. This method has been used, for example, by G. GREEN (1948) in the 
two-dimensional problems considered in the following two sections, and also by 
STOKER (1953, 1954). 

The theory of wave generation by pressure distributions has an obvious applica- 
tion in oceanographic problems. However, the theory was apparently first devel- 
oped in an attempt to explain the wave pattern produced by a ship. We shall 
not attempt to disentangle the history of the subject. For the material covered 
in Sect. 21/3 we call attention to a survey by J. K. LUNDE (1951 b) which also 
contains a useful bibliography. 

a) Pressure distributions periodic in time. Three dimensions. The boundary 
conditions have already been given in Sect. 11. If @ and $ are represented by 

@(x, y, z, t) = Re pl (x, y, z) ewiut, p (x, y, x t) = p (x, 2) e-iot, 

P = pll+ivzJ P =P,-+-iP2, 
(21 *I) 

then the condition on the free surface may be written 

and the form of the surface is given by 

q (x, .z, t) = Re {“,” v (x, 0, x) - & p (x, z)} ewiut. 

(21.2) 

@I*31 

In addition, a radiation condition is assumed at infinity [see fifth Eq. (13.9)] 
and a condition appropriate to the depth of fluid. We shall also assume p (x, z) 
to be absolutely integrable. 

The velocity potential can be expressed as follows: 

(21.3) 

and in cylindrical coordinates x = R cos tl, z = R sin a in the form 

2ncm 

p(Ka, Y,=$$J[ p (R’, a’) R’ dR’ du’ Pv “k&Y 

- 0; .I 
k--v X 

-03 
2noo 

x Jo (k l/R2 + R’s - 2 RR’ COS (d - rn)) dk + 5;’ i/P (R’, a’) x 
’ (21.4) 

x Jo (y j/R2 + R’2 - 2 RR’ cos (a’ - cc)) R’ dR’ dcd . 
60 

Handbuch der Physik, Bd. IX. 38 
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594 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 21. 

The addition theorem for JO allows one to writer 

J,jk~R~+R’~-~RR’cos(sr’-~))=~g~,J,(kR)J,(kR’)c~~~(~‘--a), 
(21.5) 

&g= 1, &*=2, n. 2 1. 

If p is independent of a, one may derive easily 

v(R, y) =%/;(R’, R’dRTVJ’;!; __ .J,W .&WV dk+ 
0 (21.6) . 

+- nygevy &(vR)f$(R’) J,(vR’) R’dR’. 
0 

The asymptotic form for large R of (21.6) is a relatively simpel expression: 

We note in passing that the potential function (21.3) or (21.4) can also be obtained 
as a distribution of sources on the surface [see HUDIMAC (1953, p. B)]. This 
may be easily verified as follows. In (13.17”) let b=~. Then, using (13.12), 
one obtains (substituting 5, c for a, c) 

2pv ~~~ekYJo(k]i(x--Ej2+(Z-5)2)dk +i2nveYY&(v1/(X-~)2+ (z-c)2). 
s 

A distribution over the plane y =0 of these sources of strength +iop (l, c)/47c~g 
yields (21.3) (we recall that a source of strength m behaves like -vn/r near the 
singularity). 

The rate at which the pressure distribution does work upon the fluid can be 
calculated directly or by using Eq. (8.2). Consider the volume of fluid contained 
in a large cylinder of radius R,. Then, from (8.2), after appropriate hnearization, 
the rate of increase of energy of the fluid is given by 

a,t)@(R,a,o,t)RdRda+ 

2n 0 

+eJ piclio~ a, y, t) @R (R, u, Y, t) 4, dy da . 

0 --co 

Now substitute (21.1) and take the average over a period, which will clearly be 
zero. The result may be written: 

o=[~~j,,=Re{-~~~ P(R,u)~~(R,u,O)R~R~~+ 

I 

(21.8) 

‘+$e~Jp~R(Ro~ a, y)F(Ro, a, Y)Rodyd~}. 

1 See G.N. WATSON: A treatise on the theory of Bessel functions, p. 353. Cambridge 1944. 
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The first integral gives the average rate W,, at which the pressure distribution 
is working upon the fluid. It must equal minus the second integral. If fi (R, a) = 
fi (R), then we may apply (21.7) to obtain a relatively simple expression for the 
average rate over the whole fluid: 

W,,= $gy 
IJ’ 

mp(R’) J#(vR’) R’HR’ ‘. 
0 

(21.9) 

To carry through the computation when p is not circularly symmetric is more 
complicated arithmetically, but can be carried through by use of (21.5). 

One can find an investigation of the waves resulting from a doubly modulated 
pressure distribution over a rectangular domain, 

+ = A e-iot cosmxcosnz, Ixl-sa, IzlSb, 

in a paper of SRETENSKII (1956). 
If the fluid is of uniform depth h, the expression for the velocity potential is 

where, as usual, m, is the real solution of 

m,tanhm,12--v =O. 

Other forms of this expression similar to (21.4), (21.6) and (21.7) can be found 
with no difficulty. We give only the analogue of (21 .o) : 

j$(R’)J,(vR’) R’dR’IZ. (21.11) 
0 

The identities following (13.18) may be used to put both (21.10) and (21.11) 
into other forms. 

Two dimensions. The derivation of the velocity potential will be carried 
through, at least in part, since it illustrates a nice application of the Plemelj- 
Sokhotskii formulas. Two complex units will be introduced, as described at the 
end of Sect. 11. That is, we shall write 

@'% Y, 4 = %bG Y) cosat+v2(x,y)sinot=Reiye-iat, 
$(x,t) =fi1(z)cosot+fi2(X)sinot=Rei$e-iut, 

i 

(21.12) 

~=pll+i~z, P = A.-t iP2, 

and also introduce a stream function v =yl + jv2 and a complex potential 

f (4 = fi (4 + i f2 (4 > fk = plk + i yk, h = 1, 2 * (21.43) 

Then the boundary condition on the free surface may be formulated as fol- 
lows 

Imi(f’(~---~O) +ivf(z--iO)}=-&j+(x). (21.14) 

3s* 
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596 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 21. 

The definition of g = f’ +ivf may be extended to the whole complex z-plant? by 
reflection, i.e. ~- 

g(x+iy) =s(x-iY), Y>O. 

Then the condition (21.14) may be written in the form 

Imi{f’(XfiO) +ivf(x&iO)~=i&jp(x). (21.15) 

We shall suppose p(x) to be absolutely integrable on the infinite interval. 
In addition, we shall suppose that either #J(X) satisfies a Holder condition (and 
is hence continuous) on the whole infinite interval, or else that there are a finite 
number of segments (-co, b,), (a,, b,), . . . . (a,, co), b,<a,+l, such that p(x) 
satisfies a Holder condition on any closed segment interior to one of the above 
segments, and at an end-point may be expressed in the form 

Q (4 
P (4 = (% _ qx J O~a<l, c = ai or b,, 

where q(x) satisfies a Holder condition at the end. Here a Holder condition 
means that for any pair of points x1, x2, fl (x) satisfies 

1%) -fi (-%)I<-4 I%- %IP, P>O. 

In the first case f’ will be assumed to have no singularities in the whole lower 
half-plane. In the second case the behavior of f’(z) near an end-point c will be 
restricted so that it must satisfy 

As usual it will be assumed that 1 f’ 1 is bounded as z--f CO and that only outgoing 
waves are generated. 

The solution of this boundary-value problem for the function g(z) = f’ +ivf 
is determined, up to an additive real constant which may be discarded here, by1 

(21.16) 

After integrating the differential equation and selecting the solution so as to 
represent outgoing waves at x = f co, one obtains finally [the derivation is 
similar to that of (13.28)] 

where the path of integration for [ is taken in the lower half-plane. The asymptotic 
form of the time-dependent velocity potential is given by 

Rei f (z) e-jot - $ e-i(Vz~ut)~i”s [PI (s) F i y& (.s)] ds as x-+-&co, (24.lri) 
-m 

1 See, e.g., N. I. MUSKHELISHVILI: Singular integral equations, $0 43, 78. Groningen: 
Noordhoff 1953. 
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Sect. 21. Waves resulting from variable pressure distributions. 

and the asymptotic form of the free surface by 

597 

From this last expression one can easily derive the 
pressure system is transferring energy to the fluid: 

average rate at which the 

’ (21.20) 

The expression for f(z) can be put into several different forms by changing 
variables and deforming the path of integration appropriately. Thus, if one 
introduces a new variable 3, by Y ([ -2) = - A (z - s) and deforms the resulting 
path to the x-axis, one obtains 

f(z) = -jGisf$(s) dsl?V~~~y” dk + &e-iV2r$(s) eivsds. (21.21) 
--co 0 -co 

A different deformation of the path leads to 

-cc x I 

For fluid of depth Jz an expression for the complex velocity potential analogous 
to (21.10) and (21.21) is 

f(z) = -i& ~ds$(s) PVf$&$-~&dk + 
-co 0 

+- 5 v~ ~s;n~2”,,~$ (s) cos llzo (z - s + i k) ds. 
0 -m 

(21.23) 

One will find both the two- and the three-dimensional case of a periodic pressure 
distribution over infinitely deep water discussed in LAMB (1904, pp. 387-393). 
STOKER (1957, Chap. 4 discusses in considerable detail the two-dimensional 
problem of waves generated by a periodic uniform pressure applied over a finite 
interval. 

,&) Moving pressure distributions. In this section we shall suppose that a 
fixed pressure distribution is moving with a constant velocity c. Thus the motion 
may be treated as time-independent in a coordinate system moving with the 
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598 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 21. 

pressure distribution. The boundary condition at the free surface is given by 
[see (11.3)1 

fpy(%O,Z) +&&m) = &B,(%Z)> v =$-, (21.24) 

and the form of the free surface by 

q(x, z) =-$(% 0, x) - &P(% 4. (21.25) 

In addition, we shall assume vanishing of the fluid motion far ahead, i.e. as 
X--S + co, and the usual conditions appropriate to infinite, or finite depth. fi will 
be assumed to be absolutely integrable and to vanish for sufficiently large values 
of ~2 + zz; however, the latter condition can be weakened. 

Results will be given without proof since their derivations are similar to those 
in Sects. 13 y and 21 CL The results for two and three dimensions will be separated. 

Three dimensions. The expression for the velocity potential for infinite 
depth of fluid can be given as follows: 

x sin [K (x - [) cos 61 cos [k (z - 5) sin 61 - 
(21.26) 

v --- 
net 

~~dpd~p(b,t)~d~sec30e-Vseca~ x 

x cos [i$ - t) set 61 c”0.s [v (z - C) sec2 8 sin 81, J 
The rate at which the pressure distribution is transferring energy to the fluid is 
given by 

W=-J~~(x,z)pJx, -o,z)dxdz. 
--oo 

(21.27) 

This may be computed directly from (21.26). The first term gives no contribution 
since it is an odd function of x--l ref. the evaluation of (20.66)]. The final result 

- 
- 

may be expressed as follows: 
an 

WL!!T- 
nc?c s 

dkJsec60-fldrdzJ dt dz P (x, Y) P (t, 0 x 
0 

x cos ,:ec2 8 [(Z- E) cos 8 + (z - C) sin 61) 

= -&- jd19 sec5 6 [P” (8) + Q” (S)] , 
0 

p(G) =/~dxdzjh(x, z) cos [vsec28((xcos6 +zsin8)], 
-cc 

If the pressure distribution is given in cylindrical coordinates, 9 =fi (R, a), 
x =R cos a, z =R sin CI, then one may express, say, P(8) in the form 

P(6) = TdR $h j? p (R, ct) cos [v R sec2 6 cos (a - S)] (21.29) 
0 0 

(21.28) 

See separate file errata.pdf


Ronald W. Yeung
"Surface Waves Online" - Copyright 2002, Regents of the University of California.  All Rights Reserved



Sect. 21. Waves resulting from variable pressure distributions. 599 

and a similar formula for Q (6). If $ depends only upon R, then Q ($3) EE 0 and 

P(O) =prrRfi(R) J,(vRseGG)dR. 

If the fluid is of depth 12, the velocity potential is given by 

--ccl 0 

xpv wdheshk(y+h)sechkh 

s k-vseca6tanhkh 
sin [k (x-5) cos G]cos [k (2-C) sin 61 - 

0 

--s~dQd5p(F,:)~dBsecB 1 k, cash k, (y + h) sech k, k 
I -vhsec28sech2koh 

x 

net -co 6. 
” x cos [k, (x - 5) cos 81 cos [k, (2 - () sin 81 

where k, = k, (8) is the positive real root of 

k-vsec2i3tanhkk=O, 6,<8< 437, 
and 

(21.31) 

6 = Arccos]lvk 
0 

if vh=g<i, 

0 if vh>l. 

The rate of transfer of energy may again be computed from (21.27) and again 
only the second integral gives a nonvanishing contribution. The result may be 
expressed in several forms analogous to (21.28) to (21.30) : 

an 00 co 
W=C 

neg J’ da -lT-v h ;ey;s;ch2 k. h j-j-d% dzj-fig. ai- P (x> 4 P K t? x 
% 

x cos Tk: [(x - j,“cos 6 + (z - C) sin 61)) 

(21.32) 

P(G) = JTp (x, Z) cos [k, (x cos 6 + z sin S)] dx dy , 
-cQ 

Q(6) =/7$(x, z) sin [k,(xcos6 +.zsin6)] dxdy. 
--w I 

In cylindrical coordinates formulas (21.29) and (21.30) carry over to the present 
situation with v replaced by k,. 

The asymptotic form of the free surface for either infinite or finite depth is 
much more complicated to analyze than for the stationary periodically oscillating 
pressure distribution of the preceding section. Although it is not strictly necessary 
to do so, it has been customary in this type of analysis to consider the special 
case of a “concentrated pressure point “. To derive the velocity potential for 
the pressure point consider the pressure distribution defined by 

(21.33) 
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600 JOHNV.WEHAUSEN and EDMUNDV.LAITONE: Surface Waves. Sect. 21. 

Substitute in (21.26) or (21.31) and take the limit as R,-+O. Then (21.26) becomes 

f= 

Y,% Y> 4 =- nf~cJdBsecBPVfik & sin (k x cos 6) cos (k z sin 6) - 
0 0 

bn b (21.34) 

- $sdi3 se? 6 ey Ysec”~~~~ (v x set 6) cos (v .z sec2 6 sin 6) . 
0 I 

The velocity potential for the pressure point in fluid of finite depth is derived 
similarly. The equation representing the free surface may now be obtained im- 
mediately from (21.25) : 

~(x,~)=$~&o,z), x2 +2>0. (21.35) 

The velocity potential (21.34) is very similar to that of a submerged source 
in steady motion [see Eq. (13.36)] and the method sketched in Sect. 13 for the 
derivation of the asymptotic expression (13.42) can be carried over directly to 
the moving pressure point. 

The result, expressed in cylindrical coordinates, is as follows: 

for Oga<n--Arcsin+=a,: 

q(R,a) =O(vR)-2; 

for a =ccC: 

q(R 4 = -$$2-~3~r(+] (vX)-~sin($vX)+O((vX)-t) 

for a,<a<n: 

TV,4 =~~rl-ybin2aliiSect;sin(vR~1--j+ 

+ sect 8, sin (v Ii p2 + -:)I + 0 ((v R)-1) ; 
for U=S-C: 

r(Rn) = - ~~~sin(vR++j. 

’ (21.36) 

The variables 6,) 6,, ,ur , ,u~ are the same ones defined following (13.42), where 
certain properties are also given. For the pressure point Fig. 1 a is not quite 
accurate as a description of the wave crests in the region 1 sz --al <a, since the 
phase in (21.36) has been shifted by in; the wave crests in Fig. 1 a should be 
moved back a distance 5~. Also, in the neighborhood of a --CC, the expressions 
in (21.36) are inaccurate; in this region 7 may be expressed in terms of Airy 
functions [see URSELL (1960)]. 

The wave pattern resulting from a moving pressure distribution has been 
the subject of many investigations, starting apparently with KELVIN (1906). 
His aim was to explain the typical wave pattern found behind a ship. The proce- 
dure is quite reasonable as a method for obtaining a qualitative prediction of a 
ship’s wave pattern, since a moving ship has associated with it a pressure distri- 
bution around the wetted hull. The obvious disadvantage of the method is that 
it gives no connection between the geometry of the hull and the wave pattern. 
For this the “thin ship” approximation of Sect. 20/3 is better within its range of 
applicability. The single pressure point can be taken to represent approximately 
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Sect. 21. Waves resulting from variable pressure distributions. 601 

a ship moving at high speed (more accurately, at high Froude number c/1/Lg, 
where L is the length), say a fast motor boat. 

For detailed investigation of the asymptotic expression one should refer to 
HOGNER (1923), PETERS (1949), BARTELS and DOWNING (1955) (who do not 
restrict themselves to a pressure point) and STOKER (1957, Chap. 8). The neces- 
sary modifications for finite depth have been made by HAVELOCK (1908) and 
TETUR~ INUI (1936) and are described qualitatively in the discussion following 
(11.42). One can find an exposition of the theory of waves generated by moving 
pressure distributions in a report by LUNDE (1951 b). Several papers by HAVE- 
LOCK (1909, 1914b, 1919, 1922) take up the wave resistance (= W/c) of a pressure 
distribution. HOGNER (1928) has also considered the wave resistance and gives 
essentially (21.28). 

In the preceding considerations we have assumed that, as x2 + z2 + 00, $J (x, Z) 
approached zero sufficiently quickly so that it might be represented as a Fourier 
integral. It is also possible to proceed somewhat differently, assume fi(x, y) 
periodic in one or both variables and use a Fourier series representation. This has 
been done, for example, by VOIT (1957a), who has considered for both infinite 
and finite depth a moving pressure distribution of the following form: 

The waves resulting from a pressure point moving parallel to beaches forming 
angles of 30 and 45” with the surface have been treated by HANSON (1926); 
in the same paper he also treats the waves formed by a pressure point moving 
over a two-layered fluid. A detailed investigation of this last topic is given in a 
paper of SRETENSKII’S (1934). 

Two dimensions. By introducing a stream function y(x, y) and a complex 
potential f =q~ fily, the free surface boundary condition can be put into a form 
analogous to (21.14)) namely, 

(21.37) 

In addition, we assume I f’l bounded as Z+ 00 and also lim 1 f’l =O. We shall 
x-+03 

assume fi (x) subject to the same limitations as in Sect. 21 CL 
One may apply the same method of analysis to derive the following forms for 

the complex velocity potential : 

f(z) = 
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602 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. sect. 21. 

where the path of integration for [ in the first expression is taken in the lower 
half-plane. The rate at which the pressure distribution transfers energy to the 
fluid is easily found from formula (21.27) and the second expression for f(z) 
to be 

03 al 

w=& 
J’.I 

‘P(X)~(~)COSv(X--)dXd5. 
--cc --oo 

(21.39) 

If the fluid is of depth h, the complex velocity potential may be given in a 
form analogous to the second formula of (21.37) : 

(s) PVJdk sink(z--+fi)sechkh -- - 
k -vtanhkh 

--co 
! (218.40) 

cos k, (z - s + i h) sech k, h .- 
I -~?tsech2k,h ds, 

where K, is the real positive root of 

K,---tanhK,,h =0 

and exists only if vt5 =gJz/cs>l ; if vh (= 1, the last term in (21.40) must be deleted. 
The rate at which the pressure is doing work upon the fluid is given by 

The absence of the second term in (21.40) and the vanishing of W when 
V/Z< 1 correspond to the absence of an infinite train of trailing waves. A similar 
phenomenon occurs behind a moving singularity in two dimensions [cf. (11.46) 
to (13.48) and the following remarks]. 

For either (21.37) or (21.39) the form of the free surface can be written down 
immediately from the formula 

q(x) =+(x,0). (21.41) 

We shall not carry out the details. The asymptotic form of the surface behind 
a two-dimensional “pressure point “, or also a distributed pressure, is much 
easier in two than in three dimensions and we again omit a detailed statement. 
However, the problem has been treated by KELVIN (1905) and is discussed in 
LAMB (1932, $ 242 to 245), both for infinite and finite depth. It is also discussed 
in the paper of PETERS (1949) already cited in connection with the three-dimen- 
sional problem. 

Derivations of the complex velocity potential may be found in the papers of 
SRETENSKII (1934, 1940), SEDOV (1936), KOCHIN (1939) and HASKIND (1943a) 
already cited in connection with planing surfaces. We refer also to papers of 
DEAN (1947) and TIMMAN and VOSSERS (1955). 

y) Moving $eriodic #yessure distrib&ions. It is clearly possible to combine 
the cases considered in Sects. 21 CI and /3 and consider the waves resulting from 
a pressure distribution expressible in the form 
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where the coordinates are fixed in space. The resulting velocity potential will 
be analogous to (13.52) for the three-dimensional case, if one is dealing with a 
“pressure point “. 

We shall not reproduce the formulas here. However, the analogues of (13.49) 
and (13.53) for pressure distributions may be found in Eqs. (22.48) and (22.49) 
or in the cited report of LUNDE (1951 b), and from these the required velocity 
potential may be found. For two-dimensional motion the details, carried out by 
this procedure, may be found in papers by KAPLAN (1957) and Wu (1957). 

22. Initial-value problems. In the special problems considered in Sects. 17 
to 21, the dependence upon the time has been precipitated out, either by assum- 
ing the motion steady in a moving coordinate system or by assuming a harmonic 
dependence upon the time. In this section we shall consider motions in which 
the displacement and velocity of the surface are specified at some instant of 
time, say t =O, the motions of any solid boundaries are given for each instant 
t 2 0 (except at the very end 
where freely floating bodies 
are considered) and the pres- 
sure distribution over the free 
surface is a given function for 
t 20. 

It is not usually possible 
in the most general situations 
to give explicit solutions for 
such problems. However, VOL- 

Fig. 27. 

TERRA (1934) has proved a uniqueness theorem and has shown how to reduce 
the problem to finding an appropriate GREEN’S function. His results were later 
rediscovered and extended to a wider class of problems by FINKELSTEIN (1957) 
[see’ also STOKER (1957, Chap. 6)]. However, the use of GREEN’S functions 
for initial-value problems extends back even earlier, at least to the papers of 
HADAMARD (1910, 1916) and BOULIGAND (1913). These theorems are discussed 
in Sect. 22~ 

One of the classical problems in this category is associated with the names 
CAUCHY (1827) and POISSON (1815). In this problem the fluid is infinite in 
horizontal extent, without obstructions, and either infinitely deep or of uniform 
depth h. At the initial instant t =O, the form of the surface and its vertical 
velocity are given and one seeks the subsequent motion. Such problems have 
already been discussed at some length in Sect. 15. However, in that section 
interest centered upon investigation of certain aspects of the subsequent motion 
rather than upon obtaining the solution. In addition, the treatment of that 
section was limited to two-dimensional motion, although the methods could 
have been extended to three-dimensional motion. 

The history of this problem, including an exposition of the methods used by 
various authors, is included in a paper by RISSER (1924, pp. 113 - 144). Another 
expository account can be found in VERGNE (1928, Chap. I). The problem is 
discussed here in Sect. 228. 

In Sect. 22~ several special initial-value problems are discussed. 

a) Some general theorems. Let the fluid be bounded by the free surface F, 
fixed surfaces S and the surfaces of a finite number of bodies of bounded extent 
undergoing specified motions of small amplitude about equilibrium positions S, 
(see Fig. 27). Let the pressure distribution on the free surface F, also be a given 
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function $ (x, Z, t). Furthermore, at time t = 0 let the initial displacement and 
vertical velocity of the free surface be given functions 

7 (% z,o) > 178 = (x, z,o) * (22.1) 

The boundary conditions to be satisfied by the velocity potential @(x, y, z, t) 
are [see Eq. (11 .I)] 

ai (x, 62, t) + g Q$, (x, 0,~ 4 = - t P, (x, 2, t) on F, 
CD%=0 on S, 

CD%,= VB(t) on S,, (22.2) 

%(x,o,z,o) =-g~(x,~,O)-~~(~,~,~) on F, 

CDy (x, 0, z, 0) = qt (x, z, 0) on F. 

Here F means that part of the plane y =0 occupied by fluid when everything 
is at rest. In addition, it will be assumed that, for each t, there is a bound B and 
a distance r0 such that 1 @I, l@l, 1 grad @I and I grad C&I are each less than B 
for Xs+ys+zs>r,2. 

Let us now suppose that it is possible to find a source function G of the fol- 
lowing nature : 

where as usual P= (x -E)s+ (y --v)~+ (Z --[)a and H is harmonic for ~50, and 
in addition G satisfies 

G(x,y,z;E,q,C;t,t) =G,(x,y,~;E,~,t;t,4 =o> 
G,(x,y,2;5,q,[;t,z) =O for (x,y,z) on S andforallt. 1 

(22.4) 

This function has already been constructed in two cases. If there are no fixed 
boundaries and the fluid is infinitely deep, the function defined in (13.49) satisfies 
the conditions after slight modifications: replace (a, b, c) by (6, q, c), set m(t) = 1, 
and extend the definition of @ [of (13.49)] to negative t by CD (x, y, z, - t) = 
@ (x, y, Z, t). Then we take 

G(x,y,z;5,5;t,z) =@(x,y,z;t--) =G(x,y,x;t,q,C;z,t). 

Similarly, the function defined in (13.53) allows one to construct G when the 
fixed boundary consists of a horizontal bottom at y = - h. For the first G, FINKEL- 
STEIN (1957, Appendix) has shown that G is 0 (Rm2) and GR and GY are 0 (R-3) 
as R-too, where R2=(~-l)2+(~-Q2; for the second G, FINKELSTEIN (1957, 
3 3) has shown that G, G, and G, are o exp 
arbitrary E> 0. 

( (%+e]Rj as R-too for 

Now apply GREEN’S theorem to the functions cD~ and G and the region of 
fluid bounded by the surfaces S,, the fixed boundaries S and a large sphere 52 
of radius Q and center at the origin, where Q is chosen large enough to include 
all the surfaces S,. Only parts of F, S and Q will serve as bounding surfaces, 
and we shall call these parts F’, S’ and Q’, respectively. Then 

where v is the exterior normal. The right-hand side is actually independent of z 
since z enters only through the function H which is harmonic. The integral over 

See separate file errata.pdf


See separate file errata.pdf


See separate file errata.pdf


Ronald W. Yeung
"Surface Waves Online" - Copyright 2002, Regents of the University of California.  All Rights Reserved




