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Let us define two averages, one for functions of x: 

Rt) =-[i w 6 (x, 4 ax/-J6 (x, 4 ax j 

and one for functions of k: 

if’ = T@(k) E(k) E*(k) dk/ TE(k) E*(k) dk. 
--lx -m 

Then, assuming that the various quantities in question exist, one finds, using 
well known theorems on Fourier transformsr, 

zR(t) =Xx(O) +iTt (15.3) 
and 

[x-xR(t)]2= [x-1-,(0)]~++[i10g~]‘-+0g~]‘}+\ (15 4) 

+ p {TO - ip}. J 
Thus, on this definition the average position of qR moves to the right with 

constant velocity 3 and the hump spreads according to a quadratic law. We 
note that the coefficient of t2 is positive except if o’ is a constant, when it vanishes. 
It may become infinite, and, in fact, does so for infinitely deep water if the 
gravest modes are present, i.e., if JqK dx+o. The coefficient of t vanishes if cr’ 
is constant or if [i log E*/E]’ is constant; the latter will occur if “/I (x, 0) is either 
symmetric or antisymmetric about some point x0, but this does not exhaust 
all possibilities. The sign of this term does not seem to be determined, so that 
the spread of the hump may conceivably decrease before starting to increase. 

Investigations of the motion of the average position of the hump and of its 
spread give only a rather crude picture of its behavior. By other methods out- 
lined below one may obtain further insight into the motion. 

We begin by applying the analysis of the average motion to that part of Q 
resulting from only a narrow band in its spectrum. Let 

qR(x, t; k,, 8) = R;‘~‘~E(k) e-i(kz-o(k)t)dk. 
0 e 

(15.5) 

We shall call this a wave packet. The average position satisfies 

XR(t; k,, e) =X,(0; k,, E) +F’(k,, e) t; 

where iF(k, E) is now the average of o’(k) over the narrow band [k, - E, k, + E]. 
The narrower the band, the closer ?(k,,, E) is to o’(k,), assuming the latter con- 
tinuous. As a limiting case we shall say that the wave packet resulting from an 
infinitesimal band about k, moves with velocity o’(k,). It is customary to call 
o’(k) the group velocity. This is the same as the phase velocity o(k)/k only if 
G = a k. A wave packet will spread with passage of time unless the two velocities 
are equal, for (15.4) is applicable to the wave packet with the restricted definition 
of average. As might be expected, the smaller the width of the band, the smaller 
the coefficient of t2 and the smaller the rate of growth. However, as we shall 
see below, the initial spread may be wide for a narrow band. 

The wave packet (15.5) may also be investigated by a different method. Let 
us expand o(k) in the first few terms of a Taylor series about k,: 

o(k) = o(k,) + o’(k,) (k - k,) + ,[d’(x) (k - x) ax. (15.6) 

1 See, e.g., S. BOCHNER and K. CHANDRASEKHARAN: Fourier transforms, Chap. IV, j 2. 
Princeton 1949. 
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We may then write 

qR(x, t; k,, 6) = Re + e-i[kox--a(Mt! k,-ts ,$_-(“) ,--i [x--o’(h) tl V+-ko)dk + 
ko+E 

e- i [~--o’Mtl (k--h) [exp (-+i tie”(x) (k-x) ax) -11 $k} ’ (I 5.7) 

= Re .jj e-i [ho x-a (krJ tl M (x - a’(k,) t; k,, E) + R. 

Using the inequality 1 ei”- 115 [u 1, one finds 

(15 4 

The remainder can thus be made small by taking F or t small enough. However, 
once E is fixed, R will eventually become large as t increases. Let us suppose, 

however, that t and E are 
smallenoughsothatthefirst 
term determines the main 
features of the motion. The 
first factor represents aperi- 
odic wave of wave number 
k, moving with its phase 
velocity o(k,)/k,. The sec- 

L,/ 
Fig.% 

ond factor, determining the 
amplitude of the first, re- 
presents a profile being 
translated to the right with 

velocity o’(k,). Thus one may say that the gross outline of the surface is moving 
to the right with the group velocity. One may see this more clearly if one assumes 
E small enough so that we may take E(k) as constant over the band width. Then 

M(x - u’(k,,) t; k,, E) = E(k,) sin f~o$‘+;‘,“‘.“, 

and ?jR (x, t; k,, E) appears approximately as in Fig. 8. Here the dotted envelop- 
ing curves represent & *M and move to the right with velocity o’(k,), whereas 
the inscribed solid curves represent the first factor and move to the right with 
phase velocity CJ (k,)/k, . The whole moves as a fixed pattern only if the two 
velocities are equal. Otherwise, assuming cr’(k,,) CO (k,)/k,, the inscribed curves 
will progress through the wave packet, gradually disappearing at the right. For 
a very narrow band the packet will spread wide before its first zero on either 
side of the maximum. 

A disadvantage of this last analysis is that it becomes less and less accurate 
as t becomes large. However, there exists another approximation to qR (x, t) 
for large values of t which helps to complete the picture. This ultimate behavior 
of qR can to some extent be predicted from the analysis of the average motion 
of a wave band. If we think of qR as made up of the contributions from a number 
of narrow wave bands, we know that each contribution is moving with the average 
group velocity of the band. Thus after some time we shall expect that these 
various contributions will have separated from one another, with the bands about 
the gravest modes, which travel fastest, having progressed the furthest. This 
prediction will be confirmed. 

What is needed for this final approximation is an asymptotic expansion for 
large t. It is convenient to express rR in the slightly altered form 

yR(x, t) = $TE(k) e-i[k?-“(k)ltdk 
-cc 

(15.9) 
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and to consider it as depending upon the two parameters a$ and t. Then for each 
value of x/t we shall give an expansion for large values of t. For a derivation of 
the expansion we refer to STOKER (1957, 5 6.8) or ERDBLYI (1956, § 2.9). 

Let the functions k, (x/t), r = 1, 2, . . . , 1z, be defined by 

o’(kJ = x/t; (45.10) 

i.e. we allow the possibility of several roots. In the situation of interest to us 
there will be either one or two roots, or none. The asymptotic expression for qR 
is then given by 

where the first summation is over all values of I for which o”(k,) + 0 and the 
second over all k, for which o”(k,) = o but o”‘(k,) + O; further terms would be 
necessary for values of Y for which both vanish but this will not occur in our 
examples. If some k, = 0, then the corresponding term must be multiplied by 8. 
For a value of x/t for which no solution to (15.10) exists, it is easy to show by 
a change of variables in (15.9)) say G = k x/t - o(k), and integration by parts that 
rjR (x, t) =o (t-l). 

Let us examine in some detail the implications of one term of (15.11), say 
Y = 1, for the motion of qR, . if several terms are present for a given value of x/t 
one must superpose the resultant motions. 

If x,/t is held constant while t increases, then clearly one must set x =o’(k,) t, 
i.e. we are examining qR from the standpoint of an observer moving with group 
velocity o’(k,). Since the coefficient of the harmonic term is t-4 times a function 
of k,, which is being held constant, the gross outline of qR will appear constant 
in form, but decreasing in amplitude because of t-6. However, just as in the 
analysis of (15.7)) there is a harmonic of wave number k, moving through the gross 
outline with phase velocity o(k,)/k,. The amplitude of the gross outline is pro- 
portional to E(k,), but also depends now upon o”(kJ, in contrast to the situation 
for small t according to (15.7). 

If the value of x/t is such that o”(k,) =O, then one must examine a term from 
the second summation in (15.11). It is evident that the interpretation is the same 
except that o”’ occurs in place of 0” and that the amplitude decreases more slowly 
because of the t-h. This situation can happen, for example, in the case of gravity 
waves in water of depth k for x =t vgh. Then k,(lgh) =O, a”(O) =O, and 
o”‘(0) = - h2 ]lgh. This also occurs for combined gravity-capillary waves when 
the ,curve a’(k) has a minimum. 

The approximation (15.11) to rR will obviously be very poor for a value x/t 
such that d’(kJ is near to zero for some r unless t is extremely large. It is shown 
elsewhere1 how an Airy function may be used to modify the relevant term in 
the second summand to give a useful asymptotic expansion for k, near a zero 
of a”. 

If x/t is fixed at a value for which (15 .tO) has no solution, then for an observer 
moving with this velocity the disturbance of the surface is very small, for it has 
been dying out as t-l. The first term of the expansion may, of course, be com- 

1 H. JEFPREYS and B. JEPFREYS: Methods of mathematical physics, 3rd ed., p 17.09. 
Cambridge 1956. - See also C. CHESTER, B. FRIEDMAN and F. URSELL: Proc. Cambridge 
Phil. Sot. 53, 599-611 (1957). 

See separate file errata.pdf
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puted as indicated above. This situation will occur for a disturbance in water of 
depth h if x/t > ]lgh. It will also occur when surface tension is taken into account 
for X/t < a~i*. 

The asymptotic expansion (15 .I I) may also be used in a different fashion. 
Let us fix our attention upon one value of x and let t increase. Then x/t will 
decrease and the value k,(x/t) associated with the point x at a given moment 
will also change; for pure gravity waves it will increase. The observer stationed 
at x will then observe waves of continually increasing wave number (decreasing 
wave length) moving by with phase velocities appropriate to their lengths. The 
amplitudes at a given instant will depend upon the first factor. The gross outline 
of the waves will pass the observer at the group velocity appropriate to the wave 
number present at the moment, and, of course, the amplitude is decreasing as 
t- b. In the case of a disturbance on water of depth h, if the observer is initially 
far from the hump, then even for large enough values of t for the asymptotic 
expansion to be valid the value of x/t may be greater than m. Then the observer 
will see practically no disturbance until the gravest modes begin to reach him. 
We note again that he must anticipate the arrival of a given wave number by 
its group velocity, not phase velocity, for it is the former which controls the 
amplitude. In the case of combined gravity-capillary waves, when t is large enough 
one will have x/t < o& and the disturbance will be negligible. 

It is also possible to find an asymptotic expansion for Q(X, t) for x/t fixed 
and large x. It turns out to be the same as (15.11) with 0 (t- “) replaced by 0 (x- i). 
This expansion allows one, so to speak, to take snapshots of the right-hand end 
of rR at different instants of time. If we fix t and let x increase, x/t increases also 
and k,(x/t) decreases for pure gravity waves. Thus the wave length increases 
as one moves to the right; the observed amplitude will depend upon the first 
factor. For gravity waves on water of depth lz, if x is large enough, x/t > IgF, 
and the disturbance will be small of order x-l. 

Finally, we use the asymptotic expansion to investigate the motion of a 
particular phase of vR(x, t): say a zero,-for large t. Such% 
mined by 

a(x, t) = k, x - o(k,) t = const, 

where, as usual, k, = k, (x/t); solving for x gives x=x(t), 
from 

zzz 

Thus a particular phase travels with the phase velocity of the harmonic com- 

point will be deter- 

One may find k(t) 

C.T (4 
4 

ponent associated with it at the moment. However, if the group and phase 
velocities are different, it is then moving at a different velocity from a point 
just keeping pace with waves of a given wave number. In particular, for gravity 
waves it is moving faster, hence moves into region of lower wave number and 
higher velocity and is accelerating. Acomputation of 2 bears this out: 

for this is always positive for gravity waves. The right-hand side is, of course, 
a function of x and t. For deep-water gravity waves the function x(t) may easily 

See separate file errata.pdf
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be found from the earlier equation: 

543 

or 

~=“;dt-+ 
1 1 

2a’(k,)t-+=2+$5$ 
1 

x(t) = s. 

Hence 2 =g/za and for large t the acceleration is constant. If the depth is finite, 
the computation is no longer simple, although it is possible to show that x(t) 
varies from x(t) = t J@ for a phase associated with K = 0 to x(t) = A t2 for a phase 
associated with very large k. 

Fig. 9 is taken from a paper of KELVIN’S (1907), and shows the computed 
values.of “17 (x, t) for an initial displacement given by 

T(x o) _ 11 + (1 + .2)!lh ____--- > 
$(I + x2)% [2 - (If 4"l 

and for t@ = *, 1, 3, 4, 8 (the units have been chosen so that g = 4). The descrip- 
tion of the behavior of qR (x, t) outlined in the preceding paragraphs can be easily 

Fig. 9. 

verified qualitatively by inspection -of the successive snapshots of qR(x, t) 
GREEN (1909) has shown that if one estimates the wave length at any maximum 
as double the distance between the two including zeros, then the position is 
very close to that which would be estimated by using the group velocity (cf. 
HAVELOCK, 1914, p. 37). 

Fig. 10 from a report by J.E. PRINS (1956; also 195813) shows measured time 
histories taken at various distances from the center of an initial rectangular hump 
of length 2L and height Q in water of depth h for specific values shown in the 
figure. In general, the features of the, motion described above were well verified 
by this experimental investigation. 

We assemble here the expressions for a(k) and ko’/o for a number of cases 
of water waves. 

1. Deep-water gravity waves : 

2. Gravity waves at the interface of two fluids, each of infinite vertical extent: 

Handhuch der Physik, Bd. IX. 33 
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514 JOHN V. ,WEHAUSEN and EDMUND V. LAITONE: Surface Waves. 

3. Gravity waves in water of depth h : 

Sect. 1.5. 

o(k) = j/g k tanh kh , F = -i- 

4. Gravity waves for a layer of thickness d of one fluid over a deep layer of 
a heavier one: 

Fig. IO. 

5. Waves at a free surface of a deep fluid with both gravity and surface ten- 
sion acting : 

o(K) = 

6. Waves at a free surface of a fluid of depth h with both gravity and surface 
tension acting : 

o(k) =m +zic]tanhkh, 

In cases 1 to 4 a” is always negative if k >O. In case 5 it crosses the k-axis at 
k = [ge T-l Q(213 - 3)]” and becomes positive. In cases 1 to 4 o’<a/k for k > 0. 
In case 5 a’<a/k for o<k<lg~/T; then a’ crosses a/k at the minimum of the 
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latter and thereafter remains larger. (Note that o’ always passes through a 
stationary value of a/k, passing from beneath to above in going through a mini- 
mum, and the reverse at a maximum.) We shall not discuss 6 in detail. For 
h>hc=1/jT/2eg, o/k has a minimum for some k,, o<k,<l/Qg/T and o’ a 
minimum to the left of this. For h d h,, o/k is an increasing function, starting 
at lg h for k = 0, and o’ is also increasing, u’ >a/k for k >O, o’(O) = dg h. Fig. 11 
shows graphs of o‘, o/k and o’ for 1, 3, 5, and 6 (the scales were chosen for con- 
venience) . 

5 k IU u 
I I I, , I I , I, 

5 k 7ff 
Fig. II. 

One may also take il = 27zjk as the independent variable, and then express 
the phase velocity c and group velocity U as functions of il. An easy computation 
shows that 

j&=c-uu. 
dl 

This equation has a simple interpretation in the geometry of the curve for c(n), 
as was shown by LAMB (1932, p. 382) : For a given value of 1, U is the intercept 
on the vertical axis of the tangent to the c (A) curve at the point (1, c (1)). One 
value of U may correspond to more than one value of 2, as, for example, in the 
case of gravity-capillary waves. See HAVELOCK (1914, 5 11). 

p) The firopagation of energy. It seems intuitively clear that as long as the 
right-moving part of an initial hump keeps its integrity the energy associated 
with the motion will in some sense move with the hump. We wish to consider 
in what sense this is true. We limit ourselves in the following discussion to a 
single fluid of depth h, where h may become infinite. However, surface tension 
may act upon the free surface. 

33* 

See separate file errata.pdf
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We first introduce the notion of energy density for a given value of x. It will 
be convenient to separate potential, kinetic and surface energy. Let 

wwj 

be the densities of potential, kinetic and surface energies, respectively, where 
here @ is the velocity potential corresponding to qR. 

These functions may now be treated in the same way as Q was in Sect. 15 CL 
We may ask for the average position of the distributions of the several densities. 
They are defined by 

Xv(t) = TX Y-(x, t) ax /-p (x, 1) dx, 
-co 

5&) =-[xF(x, 1) dx/-p(x, t) dx, I (15.43) 

x,(t) =~xt!Y(x,t)dx/ TY(~,t)dr, 
-co -co I 

respectively. Since all three densities are non-negative, one avoids the diffi- 
culty met with in defining the average position of qR. In fact, it is obvious that 
the definitions of Xx and f, coincide, so that the conclusions concerning ZR 
can be applied immediately to j&(t). In particular, 

xv(t) =Xv(Oj +2t. (15.14) 

Consider now Zr(t). First we note that, from GREEN’S Theorem, 

s”cT(x, t) dx = &Q T@(x, o, t) CD&X, o, t) dx + 
--m --co 

+~~~~~~~[-~(Xl,Y,t)~,(xl,Y,t) +~(x,,Y,t)Qi,(x,,Y,tldY. 
%:++a, 

From the assumed square-integrability of qR, the limit vanishes. Use of the 
identity x (@f + @i) = (x @), @% + (x @), @> - @ Qx and GREEN’S Theorem gives 

j%d-(x, t) dx = +Q s”x @(x, o, t) @Jx, o, t) dx - 
-lx -co 

- lim ~e~[~z(~2,~,~)-~z(~1,~,~)]dy+ 
x,---cc -* 
W-++C,J 

where again the last two limits vanish. A similar computation shows 

7x2 F-(x, t) dx = $t Q 7 
-co ---w 

x2 @(x, 0, 4 @,(x, 0, 4 dx + + Q-[-. Q2(x, Y, 4 dx dy + 

+~~~~~q,l[-x~di(x,,Y,t)~~(~l,y,1)+x~dr(x,,y,t)~,(x,,Y,t):dY- 
:+m 

- lim $e .I?[- xlQ2(xl, y,t) + x2Q2(x2, y, t)ldy. 
x,-+--o0 --h 
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Collecting these results we have 

s”9-(x, t) dx = + @ s”@(x, 0, t) CD&, 0, t) ax, 
-co -co I 

~xzqx, t) ax = g @ TX @(x, 0, t) $(x, 0, t) ax, --cx -co I 
rx2 9-(x, t) dx = + Q rx2 @(x, 0, t) G$, (x, o, t) dx + 

-cc -cm 

+ i$[@% Y>t)dxdy. 

Since from (15.2), 

qR (x, t) = + TE(k) e--i(kx--ot) dk 
-co 

and 

0(x, y, t) _:s, “;’ z ~ Y(y) E(k) e--i(kx--ot) dk, 
-co 

one finds easily 

@(x, 0, t) = +f “f’ z ~ coth k h E(k) e--i(hx--ot) dk, 
-cm 

Qy((x, 0, t) = $ Tie(k) E(k) e-i(hx-ut)dk. 
--03 

517 

(15.15) 

(15.16) 

One may now apply again, as in Sect. 15a, theorems on Fourier transforms to 
obtain co 

s 9-(x, t) dx = +- 3t ej?iF(k) E” (k) $ coth k h d k, 
--co --co 
00 

s 
x9-(x, t) dx = + 3t ~fi E(k) E*‘(k) $ coth k h dk + 

-cu --M 

$- i-n Q t[E(k) E” (k) a’(k) -$ coth k h dk, 
-cm 

m 03 

s 
x2F(x, t) dx = 

s 
x2 9-(x, o) dx + 

-co -cc 

+ +z Q tfi E(k) E*‘(k) u’ $ coth k h dk + 
-ca 

+ +- TC Q PIE(k) E*(k) o’s(k) $ coth k h. 
-co 

(15.17) 

If one uses the definition introduced earlier for average of a function of k, one 
now finds 

and a rather unwieldy expression for [X - Xr(t)12, similar in character to (15.4). 
We note that if we are dealing with pure gravity waves, so that a2 =gk tanh klz, 
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then formulas (15.17) simplify considerably and become identical with those for V. 
In this case the potential and kinetic energies are equal and propagate with the 
same velocities. 

We may now carry out similar calculations for S(x, t). The corresponding 
formulas follow 

j%+, t) dx =+cTfbE(k) E*(k) dk, 
--00 --co co 
s x 9(x, t) dx = -$ xTfi k2 E*‘(k) E(k) dk + 

-co -co 
++c Ttyk20’(k) E(k) E*(k) dk, 

-co 

7x2 9(x, t)dx= Jx2 Y(x, 0) dx + ;- 7~ Ttj?k2,‘E*‘(k) E(k) dk + 
-& --co --oo 00 

$- +- ni T P/k2 cf2E(k)E*(k) dk, 

(15.19) 

-cm 

zs (t) = xs (0) + t-y 

and 

(15.20) 

and again a formula for [x - 3s (t)]” similar in character to (15.4). 
One should note that the total potential, kinetic and surface energies associated 

with Q (x, t) each remain constant in time. If T+o, then the mean positions 
of the three energy densities propagate with different velocities, each velocity 
being an average, in some sense, of cr’. If one considers a wave packet (15.5), 
then as the width 2.s of the band of wave numbers approaches zero the velocity 
of propagation of the individual energy densities will each approach o’(k,), the 
group velocity. 

Consider now the total energy density, 

qx, 4 = qx, 4 + F(% 4 + W% 4 * 
Making use of the form of 0 (k), 

a2(k) = (gk + Tk3/p) tanhkk, 
one finds 

jtF’(x, t) dx = + rz Q s”[g + $ coth k k + -$ k2j E(k) E” (k) dk 
--oo -co 

co 
1 x-n 
2 s [g Q + T k21 E(k) E” (k) dk, 

-ca 

~~~+,t)dx=+~,g~+Tk2]iE*‘(k)E*(k)dk++~cr’(k)x 
-ca -co 

x [ge + Tk$?E*dk, 

fi%?(x,t)dx= j%&‘(~,o)dh.+ntj%(g~+Tk~]iE*‘Edk+ 
-m -bo --oo 

++Pfh,gr, + Tk2]EE*dk, 
--03 

} (15.21) 

Ronald W. Yeung
"Surface Waves Online" - Copyright 2002, Regents of the University of California.  All Rights Reserved.



Sect. 15. Group velocity and the propagation of disturbances and of energy. 519 

and 

(15.22) 

At any instant t half of the total energy is kinetic energy and the other half is 
divided between potential and surface energy. 

There is another way of considering the energy transported by surface waves 
which, at first glance, is different from the preceding treatment. Consider a fixed 
plane x =const. Then from the results in Sect. 8 one may compute the rate at 
which energy is being transported through this plane, the so-called energy-flux. 
Let us denote it by F((x, t). After appropriate linearization, formula (8.10) 
gives 

The expression for the flux has an advantage over the expressions for mean 
positions considered above in that no strong restrictions upon rj are required for 
it to exist. In fact, it can be computed for a single harmonic wave 

With 
rj=Asin(Kx-ot). 

Q = _ A 0 coshkb’+W 
k sinh k h 

cos(kx-uot), 

(15.24) 

one finds by a straightforward calculation 

F(x,~) =A2Tkocos2(kx-Ott) +A2~$cothRh[1+s~]sin2(kX--ot). 

Averaging over a. wavelength (or over a period, it makes no difference which), 
one finds 

Pa, = A2 + + (2 T k2 + c2 Q F [I + sin;kzhk h]} 

=+A2(g~ + Tk2)o’(k). 
I 

(15.25) 

Thus the group velocity enters again in connection with energy propagation, 
even though no “group” is present. The energy density and average energy per 
wave length for (15.24) are 

b(x, t) =P{;-Qg sin2 (K x - o t) + + T k2 cos2 (k x - ~7 t) + 

+-+e$cothkh[1 - xn~~~~2(J1~-d)j}, ; (15.26) 

&Tav=+A2(g~ + Tk2). I 

If one is dealing with a composite wave, averaging over a wave length is possible 
only if the resulting wave is periodic. However, even without this restriction, 
one may compute both the average flux and average energy per unit length from 

(15.27) 
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Then if a composite wave propagating to the right is given by 

q (x, t) = z Ej e--i(kF-O $)= z ai cos (hi x - q t) + bj sin (ki x - ai t) , (15.28) 
j= --00 j=l 

with 

where E,=E~j=~(aj+bi), k+=-kj, aj=o(kj) =-q, one finds 

In order to obtain these relatively simple formulas in which the contributions 
from the individual harmonics are isolated, it is essential that the averages be 
taken. Otherwise, for 8(x, t) or 9(x, t) one obtains a complicated double sum- 
mation, and the role of the group velocity is not apparent. 

A similar analysis may be carried through for the right-moving initial hump 
(15.16). However, an average of either 9 or c” computed according to (15.27) 
would vanish. Instead we take the total flux and total energy, respectively: 

The resulting formulas are analogous to (15.29) and (15.30): 

d total = +~.k e + T k21 E(k) E” (4 dk, 

S%,,,,=&%(k) [ge+Tk2]E(k)E*(k)dk. 
-co I 

If the last result is applied tc 1 narrow wave band, such as (15.5), then one finds 
the limiting relationship 

li,,%=- = a’(k,) . 
totat 

In the first method of treating the propagation of energy, i.e. in terms of the 
motion of the mean position of the energy density, it was not surprising that (T’ 
should appear, for it is a familiar property of Fourier transforms that taking the 
derivative of the transform is associated with multiplying the function by the 
variable. Thus, if 

then 

g(k) -If(x) eikxdx, 

g’(k) z[i x/(x) eiBxdx, 
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In the cases considered above the transform contained eiot as a factor, and the 
derivative contained o’t in one summand. However, the appearance of o’ in the 
formulas for Pa, or S&i seems in some ways coincidental: One makes a calcula- 
tion, and after gathering and manipulating terms discovers that a certain com- 
bination of them indeed contains 0’. That this is not really coincidence is indicated 
by the following theorem for the case (15.21) : 

cm 
a ---J’x&(x, t) ax=%&,. at (15.33) 
-co 

It may be proved as follows. From the definition of 8(x, t) 

~~~(~,t)dx=Sm~[)eprl”+)Ty:+)~~(~:+dr:)dy]dx. 
-“&a -cm 

Hence 
co co 0 

$ xB(x,t)dx= 
s s x[eg’lTt+Tri.T.t+eS(~~~~t+~~~~t)dydx. 

-02 -co --h 
Integrating the second and third terms by parts and taking account of the assumed 
behavior of 17 and CD at f co, one finds 

Since QX, f QjY =O, one may express the third summand in the first integral as 

Hence the first integral may be written 

which vanishes, since the term in brackets is just the dynamical boundary con- 
dition at the free surface. The second integral above is just 2%tai, so that (15.33) 
is proved. 

A similar line of reasoning allows one to establish the following relation between 
d and 9: 

aB(x, t) am25 t) -= at -7’ (15.34) 

essentially an expression of the conservation of energy. Eq. (15.33) may also be 
derived from (15.34) by writing the latter in the form 

and integrating. 
Although (15.33) may explain the presence of o’ in the energy flux for a con- 

tinuous spectrum and finite total energy, one is still left with the apparently 
paradoxical situation that even for (15.24), when only one frequency is present, 
CT’ enters into the expression for 9&. One would expect the occurrence of o’ 
only if one were dealing not only with a specific value k but also with neighboring 
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values. There is no useful analogue to (15.33) for the discrete spectrum, because 
there is no Fourier integral to connect in a natural way the mean position of a 
hump with 0’. However, if one approximates (15.24) or (15.28) by considering 
only the segment of ye between -L and L and taking 17 =0 outside this segment, 
then one has approximated v by vL, where the latter has a continuous spectrum 
and finite energy. For Q it is reasonable that o’(k) should enter into the energy 
propagation. The definitions adopted for @,, and c”,, in (15.27) reflect this 
approximation of 7 by Q and then a passage to the limit in such a way as t,o keep 
these quantities finite. Thus it is perhaps not surprising after all that o’ has 
entered into the computation of %&, for the method of averaging 3 and B is 
such that one replaces the discrete spectrum by a continuous one and then takes 
a limit. A different explanation of this paradoxical situation has been given by 
RAYLEIGH [Theory of soulzd, Vol. I p. 4791; generally it seems to be overlooked. 

One should note that the definitions of velocity of propagation of mean 
positions of humps and energy distributions for finite total energy and of total 
or average energy flux all retain meaning even if the boundary condition at the 
free surface has not been linearized. The comparative simplicity of the formulas 
when the boundary condition is linearized and the occurrence in them of o’ both 
result from the special form of the spectrum, namely, E(K, t) =E(K, 0) eio@Jt, 
and the applicability of properties of Fourier transforms of convolutions. 

For further information one mav consult the monoaraDh of HAVELOCK (1914) alreadv 
cited, papers by BOURGIN (1936), Rbsssv (1945, 1947), ~&ART (1948), BRO& (1$51), anh 
POINCELOT (1953, 1954), JEFFREYS and JEFFREY& Methods of mathellzatical physics (3rd ed., 
Cambridge, 1956, pp. 511- 518) and standard texts such as LAMB (1932, Sects. 236, 237, 
240, 241) and KOCHIN, KIBEL’ and ROZE (1948, Chap. 8, Sect. 8). 

16. The solution of special boundary problems. In the next several sections 
we shall be considering a variety of problems, each associated with some special 
geometrical configuration. 

In treating a particular boundary configuration one must first consider whether 
it is tractable at all by the theory of infinitesimal waves, i.e. whether it is possible 
to select a perturbation parameter E satisfying the requirements mentioned in 
Sect. 10. On this basis, for example, it would appear unreasonable to try to 
apply infinitesimal-wave theory to the waves generated by a vertical circular 
cylinder moving with constant velocity, for the slope of free surfaces may be 
expected to become very large near the front of the cylinder. On the other hand, 
in certain similar situations, notably the theory of planing surfaces, it is possible 
to strain the theory to accomodate such a situation. The choice of parameter 
will be discussed in each individual case. We call attention to the fact that in 
many cases it is a consequence of the linearization procedure that the boundary 
condition on a solid boundary is no longer to be satisfied on the physical boundary, 
but instead on some neighboring surface. The same situation occus%ed,, earlier 
in 1ineariLing the free-surface condition. This should not be considered as a further 
approximation, but rather as one consistent with the infinitesimal-wave approxi- 
mation. 

The methods for finding a solution to a boundary-value problem, once it 
has been properly formulated, seem to fall into two or possibly three groups. 
One method is a combination of separation of variables and expansion of the 
factors in Fourier-type series or integrals. This requires, of course, a geometric 
configuration related in a suitable way to the coordinate surfaces of a set of 
variables which allows separation and a complete set of associated elementary 
solutions to be used in the expansion. If a Fourier-series expansion is’ to be used, 
orthogonality of the elementary solutions is desirable. 
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If the motion is harmonic in time with frequency o and if the fluid is of finite 
depth h, then the functions 

{cash mo (Y + J4, ~0s mi (Y + J-4) (16.1) 

occurring as factors in (13.2) and (13.4), in (13.6), and in (13.8) may be shown 
easily by direct computation to be orthogonal on the interval 0 2 y 2 - k. Com- 
pleteness follows from known criterial. However, both orthogonality and com- 
pleteness are consequences of the general theory of Sturm-Liouville systems. 
The result may be used in the following way, for example. Suppose fluid occupies 
the region 

x > 0, o>y> --, O<z<l, 

and that the boundary conditions on the walls and bottom are 

@, (0, y> z, t) = qy, 4 cm at, 

~~(O,x,y,t)=di,(z,x,Y,t) =o, (16.2) 

GQz(X,y,-hh,t) =o. 

Then, by expressing F(y, Z) as a double series 

F(y, z) = 2 uog cash m, (y + h) cos y z 

+~~a~,cosmp(v+Iz)cos~z 
J 

(16.3) 

(with appropriate restrictions upon F), one may construct a solution from the 
elementary solutions in (13.6). F‘urther conditions relating to boundedness and 
behavior as 2 -+ co are necessary in order to ensure a unique solution, but will 
not be discussed here. The elementary solutions (13.8) can be used in a similar 
way for the region exterior to a vertical cylindrical boundary. Still other confi- 
gurations are possible corresponding to the various coordinate systems allowing 
separation of Azvfmpl=O. 

If the fluid is infinitely deep, it is possible to construct a Fourier-integral 
expansion using the function. 

{e~Y,kcosky +~sinky), v =3/g, O<k<m. (16.4) 

In fact, HAVELOCK (1929b) has remarked that the usual Fourier-integral re- 
presentation of a function may be altered to give 

f(Y) = ;~.r” ptbd 
(kcosky+vsinky)(kcoskq+vsinkq) 

k2 + v2 
~___ drj dk 

0 -bo 

+2veyY ‘f(q) e”qdrj. I 

(16.5) 

I’ -bo 
If the problem is such that rectangular coordinates may be used conveniently, 
then (16.5) may be combined with a Fourier-series or Fourier-integral expansion 
in z and the elementary solutions (13.5) used to construct a solution analogous 
to (16.3). The necessary expressions in both rectangular and cylindrical coordi- 
nates can be found in the cited paper of HAVELOCK. 

If the fluid is of bounded horizontal extent and is bounded by vertical sur- 
faces which are constant-coordinate surfaces in one of the coordinate systems 

1 See, e.g., N. LEVINSON: Gap and density theorems. Amer. Math. Sot. Colloq. Publ. 
No. 27, Chap. I. New York 1940. 
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allowing separation of A,p & my = 0, the various possible modes of motion of 
the fluid may be obtained as the solution of an eigenvalue problem of a classical 
type. If the container is of more general shape, it is more difficult to obtain 
explicit solutions. The problem will be discussed in Sect. 23. 

The orthogonal functions (16.1) were associated with a single value of the 
frequency o. It is possible to derive another result concerning orthogonality of 
solutions associated with different values of o. Let ql(x, y, z) cos qt and 
$%I (% y> 2) cos $,t, 0, * g-2 > be regular velocity potentials of harmonic oscillations 
of different frequencies. Furthermore, let any solid boundaries be fixed and, if 
the fluid is not bounded in extent, we suppose that 1 grad ~1 =0 (R-l-‘) as 
R2= x2+,++ 00. Consider the fluid contained within a large cylinder Q,, of 
radius R and above the plane y = -R. The fluid will be bounded partly by free 
surface FR, partly by solid boundaries S,, p artly by the horizontal plane BR 
and partly by the cylinder Q,. Applying GREEN’S theorem to the two potential 
function, one obtains 

o= ss (9h412a - 911nMz)do 
FR+SRfBR+QR 

As R-t co, the integral over OR+ BR e-0, and one has 

~.kway - ~ly~2) do = 0. (16.7) 

From the free-surface condition 

qiy (x, 0,z) = - $ TL (x, 0, z), i = 1) 2, 
and (16.7) becomes 

0; - ap 
ss g n 

pll (x, 0,~) ~2 (x, 0,~) du = 0, 

(16.8) 

(16.9) 

or simply 
(16.10) 

Hence ‘pl and v2 are orthogonal over the free surface of the fluid. This theorem 
can be used for certain initial-value problems in a manner analogous to that in 
which the orthogonality of (16.1) can be used for boundary-value problems. 
This will be done in Sect. 23 a. 

A second method for solving special problems is the method of GREEN’S 

functions or source functions [cf. VOLTERRA (1934)]. In this method one con- 
structs first a potential function of the form 

(16.11) 

such that G, is regular in y < 0 and such that G satisfies the free-surface condition, 
conditions at infinity appropriate to the problem at hand, and, if the fluid is 
of finite depth, the boundary condition on the bottom. Such solutions are, of 
course, just the singular solutions derived in Sect. 13~. Next, if there are surfaces 
S in (or on) the fluid upon which certain further boundary conditions must be 
satisfied, we attempt to satisfy them by a distribution of the modified sources 
(16.11) over the surface(s) S: 
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Here y is an unknown function which is to be determined from the boundary 
condition on S. In most problems this boundary condition consists in specifying 
CD, on S. Well known properties of surface distributions of sources then allow 
one to formulate an integral equation for y : 

~,~(x,y,x,t)=--~~(~,y,x,t)+SSy(~,17,r,t)G,(x,~,z;E,rl,r;t)da, 
s 

(x,y,z) on S, 

where N is the exterior normal to the surface S (taken here as a closed surface). 
When it is convenient, one may also use distributions of dipoles. 

It is also possible, and sometimes advantageous, to construct solutions satis- 
fying given boundary conditions on a closed surface S by distributing the sin- 
gular solutions on surfaces, lines or points completely inside S. Examples will 
occur later. 

A third method of approach is to seek first, instead of 0(x, y, z, t) or f (2, t) __ 
the functions 

x = cDTt+gQy or F =ftL+igf’. 
These functions satisfy a simpler condition on the plane y = 0: 

~(x,O,z,t) =O or ReF(x--0,t) =O. 

If the other boundary conditions are such that they can be formulated simply 
in terms of x or F, the new problem may be simpler to solve. After finding x or F, 
one must then solve a differential equation in order to obtain the desired solution 
@ or f. This procedure is called the “reduction” method by WEINSTEIN (1949). 
It was apparently first introduced by LEVI-CIVITA and has since been much 
exploited by CISOTTI, KELDYSH,, KOCHIN, SEDOV, HASKIND, LEWY, STOKER 
and others. It has already been used in the derivation of (13.28) and will be 
applied in several other problems l. The solution of the reduced problem may, of 
course, be carried out by one of the two methods already described above, or any 
other one which is convenient. 

The methods outlines above do not exhaust the possible ones for finding 
analytic solutions. However, they will occur frequently in the next several sec- 
tions. Several of the special problems treated in the following sections can be 
solved by each of the three approaches. The choice of a particular one has been 
made either to ihustrate a method or because it happens to be convenient. 
Techniques for finding numerical solutions will not be discussed. 

17. Two-dimensional progressive and standing waves in unbounded regions 
with fixed boundaries. In this and the following section we shall consider situations 
in which the region occupied by fluid extends to infinity horizontally, the solid 
boundaries are fixed, but of more complicated shape than the simple flat bottom 
considered up to now, and the motion of the fluid at infinity is prescribed, or at 
least partly so. We shall assume that the velocity is bounded at all interior points 
of the fluid and also at the infinite limits of the fluid. The motion is taken to 
be periodic everywhere with period CT. Hence we shall assume (cf. Sect. 11) that 

@(% Y>4 = PI@, Y) cos ot + pe(x, y) sin ot = Re M eeiub. _ 
The restriction to standing or progressive waves can be properly applied only 
at x = f co. Thus, we shall look for solutions which at x = CO behave like 

(Acosmx + Bsinmx)cosot 
1 The method is used also by MUSKHELISHVILI [Singular integral equations, Noordhoff, 

Groningen, 1953, 0 741 to reduce a mixed boundary condition of more complicated type to 
a simple one. 
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or 
Acos(mx+at) CBcos(mx-Got), 

and similarly at x =- oa if the fluid extends in that direction. As we shall see 
below, the coefficients cannot be chosen independently if q remains bounded 
everywhere. 

The parameter of linearization may be chosen as 

E =max(Am, Bm). 

If the solution 9 is bounded everywhere, then as E-+O, q-f0 uniformly. How- 
ever, if a singularity is allowed, then qe-o uniformly only in a region excluding 
a neighborhood about the singularity. One may presume that the solution to 
the linearized problem loses physical significance within such a neighborhood. 
[It is assumed by STOKER (1947, p. 5) that singularities at the surface are as- 
sociated with breaking of the waves.] 

We shall discuss below two types of problems: obstacles in an infinite ocean 
and sloping beaches. For each type a special case will be discussed in some detail. 
- a) Obstructions ilz an infiNitely 

long caNal. Consjder first the 
following situation. The fluid 
extends from x= --oo to x= 
+oo; the bottom is given by 

Fig. 12. y=--h(x), where k(x) =hl>o 
for x2x,, h(x)=h,>O for 

x5 x2< x1; fixed obstacles may be present in the fluid or on the surface 
(see Fig. 12). The surface at x = + 00 will be assumed to behave like 

y=A,cos(m,x+ot+a,)+B,cos(m,x-d+p,) 

and at x=--o0 like 

~=A,cos(m,x+ot+~,) +B,cos(m,x-d+&). 

A proof of the existence of a s,olution to this problem does not seem to 
exist for the general case. One would not expect a uniqueness theorem since 
no statement has been made about singularities or circulation. For infinite 
depth and a submerged body KOCHIN (1939) has proved the existence for 
sufficiently large values of m (the situation is slightly different, but the proof 
carries over). KREISEL (1949) has established the existence of a solution 
and its uniqueness in two cases. In the first case h,= 12,, only obstacles on 
the bottom are allowed, @ is assumed bounded, and a certain constant, 
defined in terms of the wavelength and the conformal mapping of the fluid region 
onto the strip 0< y<lz,, must be less than 1. Included are theorems comparing 
the values of this constaht for different types of obstructions. The second result 
allows a shallow obstruction in the surface, but requires a flat bottom and suf- 
ficiently long waves and again bounded @. ROSEAU (1952) has proved existence 
and uniqueness for no obstructions within the fluid, but for h,+h,; the curve 
joining the two ends is of a special sort. JOHN (1950, p. 78ff.) has proved uni- 
queness for a flat bottom and for a body in the free surface with the property 
that every vertical line intersects either the free surface or the body just once; 
certain regularity properties of @ must also be assumed. If the body is convex 
and intersects the free surface perpendicularly, he is able to prove also existence 
of a solution. 
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Existence and uniqueness theorems have also been proved for several special 
configurations. In most of these cases explicit solutions are given. A vertical- 
line barrier extending from the free surface to a depth 1 in an infinite fluid has 
been ‘considered by DEAN (1945), URSELL (1947) and HASKIND (194.8). Both 
DEAN and URSELL, and also MARNYANSKII (1954), also consider a barrier extend- 
ing from -00 to a distance 1 below the surface. JOHN (1948) has generalized 
both these problems to the case of a slanting barrier of slope n/2n, and obtained 
a more general solution even for the vertical barrier. DEAN (1948) and URSELL 
(1950) have also considered submerged circular cylinders in an infinitely deep 
fluid, and URSELL has established a uniqueness theorem for this case. A hori- 
zontal obstruction of finite width on the water surface (the “finite-dock problem”) 
has been treated by RUBIN (1954), who proved existence of a solution by a varia- 
tional method. Other references concerning the dock problem will be given below. 
BARTHOLOMEUSZ (1958) treats the long-wave approximation for reflection at a 
step in-the bottom. 

Geflection and transmission coefficients. If one assumes the existence 
of a solution to the general problem stated above, one may establish the form 
of the solution for x> x1 and x< x2 by using the completeness of the functions 
[cf. (16.1)] 

{cash m,, (Y + h) > ~0s nz, (Y + h)> 

in the interval - hSy50 (cf. KREISEL 1949, pp. 26-29; JOHN 1948, p. 152). 
It is 

@(% y, 4 = [Ai cos(mpx+at+ocj) +B,cos(mpx-d+pj)]x 1 

x coshm$)(y +hzi) +%zl( a cosot$-b,,sinat)kxp(--m~)IxI)cosm~)(y+Iz,), 
(17.1) 

in 

where i = 1, 2 and ~2 =gr$) tanh mf) hi = - gmg) tan rnjj) hj. 
Let us now apply the formula for dE/dt in Eq. (8.2) to the region of fluid 

bounded by the planes x =‘c2 < x2, x = cr > x1, the bottom and any other obstruc- 
tions, which we take to be between these two planes. Then, if p1: + C$ is bounded 
in the region considered, 

0 0 
aI5 

- = 
dt . 

/“Q Q @irk> Y, 4 dy- /-e @t @!A Y, 4 dy> 
--h, --he 

since on the “physical” boundaries [cf. Eq. (S.))] either 9 =0 or C$ =O. Anti- 
cipating that we are interested only in the asymptotic values for cl--+ co and 
cz+ - co, we compute the above expression using only the first term in (17.1) 
and average over a period 2 z/a : 

dE l---I dt av 

Since the average energy in the region is constant, 

This is, of course, a statement of the conservation of energy. If A, is given +O 
and B, = 0, then A,, Bl are uniquely determined. For suppose two solutions 
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ds and d)’ are possible, both with the same A, and L3, = 0, but one with A,, B,, 
the other with Ai, B; . Apply (17.2) to the difference @ - di’ : 

- mp hl 1 + sinh 2+#‘% 
I 2 v?q h, 1 (B,- B;)2=mi2)h2 if “i;$[:hz] (A2-A;)2. 

I 

Each side must be zero since they differ in sign and are equal. Hence A, = Ah 
and B, = B;. This does not, of course, imply the uniqueness of @ itself. 

If k, = Jz,, then (17.2) simplifies in an obvious way: 

A:- Bf=A;- B;. (4 7.9) 

Here k may also be infinite. 
Setting B, =O and fixing A, as above corresponds physically to giving the 

amplitude of an incoming wave far to the right. Bl is then the amplitude of the 
reflected wave and A, of the transmitted wave. The theorem of the preceding 
paragraph states that A, fixes them uniquely. We define 1 B,/A,I as the reflec- 
tion coefficielzt R and 1 A,/A,( as the transmission coefficied T. They are uniquely 
determined and R2 + T2 = I. Properly one should define both left and right 
coefficients since the channel is not symmetric. However, the uniqueness theorem 
implies that both have the same value [see KREISEL (1949) or MEYER (1955)]. 
One can clearly arrange the phases so that A, and A, have the same sign. If 
this is done, t12 - u1 will be the $hase shift caused by the obstacles. 

KREISEL (1949) has proved several general theorems concerning the reflection 
coefficient if h, = h, . In particular, if there are no obstacles within the fluid, 
he determines upper and lower bounds for the reflection coefficient in terms of 
the conformal mapping z ([) of the infinite strip O>q> -k onto the region 
occupied by fluid, with infinities corresponding. His bounds become closer as 
the wavelength increases. He gives, for example, asymptotic expressions as 
m,-+O for the reflection coefficient from a horizontal reef of width a and height E 
and from a flat plate in the surface of beam b, namely, 

and 

e 2992, h 1 sin 2~4, al 
h sinh 2~4, h’(l + 2nz, h/sinh 2m, h) 

mob 
I + 2m,h/sinh2m,k’ 

Other general considerations will be found in BIESEL and LE MBHAUTB (1955). 

An interesting special result of DEAN (1947) [ see also URSELL (1950)] is that 
the reflection coefficient from a submerged circular cylinder in infinitely deep 
water vanishes. The proof may be briefly sketched. Let a be the radius and let 
the center be at (0, -b), b>a. Let the velocity potential be written as a sum 
of an incoming wave and a diverging wave: 

@=Ave*“‘Yos(vx+ot) +cib,,; 

and suppose that G0 can be expressed as a sum of multipoles (1 ‘j .3 I), starting with 
dipoles : 

where @t) is the potential for the symmetric potential of order n and strength 
Q = 1, and @t) that for the antisymmetric one. The boundary condition on the 
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cylinder [using the notation of (13.31)], 

aQo - 
ay I=a 

=Ave-~beva~sfi[{ ’ ( sin v a sin 6) sin 6 - cos (v a cos 8) cos G} cos 0 t + 

+{cos(vasin6)sin6+sin(vasin6)cos6}sinat], 

gives the relation a, = -a,, b, =c,. The reflected wave at + 00 from the anti- 
symmetric functions then just cancels that from the symmetric functions. They 
reinforce each other at x = - 00. The phase change for b/a =$, 02a/g =$ was 
computed numerically by both DEAN and URSELL and for this case was very 
close to 90”. 

As mentioned above, straight-line barriers have been considered by DEAN 
(1945, 1946), URSELL (1947), HASKIND (1948), JOHN (1948), and LEVINE (1957). 
The last three authors use the reduction method, whereas the first two use a 
Fourier-integral method which leads to a singular integral equation. We shall 
treat this problem by the reduction method. DEAN and JOHN also treat barriers 
inclined at an angle n/2n. LEVINE and RODEMICH (1958) solve the vertical- 
barrier problem by several methods, including the cited ones, and then apply 
one of them to the problem of waves incident upon two parallel vertical barriers. 

Vertical barrier. Let the barrier extend along the y-axis from y=o to 
y = - 1 and suppose an incoming wave is given at x = + 00 as 

“17=Acos(vX+~t+CI), G=gv. 

We shall look for a velocity potential @ having the form 

@=-A$e’Ysin(vx+ot+~) +vrcosot+v,sinot 

and satisfying the following boundary conditions on the free surface and the 
barrier: 

@‘tt+g@y(%OJ), Ix[>o and @%(o,y,t) =o, o>y>-1. 

As x--f f 00, q~r cos ot +v2 sin at must represent outgoing waves. In the neigh- 
borhood of (0, ---I) it will be assumed that 

lim [x2 + (y + Z)“] (@z + @$) = 0 as (x, y) -+ (0, - I). 

In the neighborhood of the intersection of the barrier and the surface (0, 0) as 
well as in the region of fluid bounded away from the barrier, we shall assume 
cib! + CD; bounded. It should be noted, however, that this assumption excludes 
a large class of solutions of possible physical interest (cf. JOHN 1948). 

If we introduce the stream functions Y, yi, and 1y2 corresponding to @, CJJ 
and v2 and the corresponding complex potentials F, fi and f2, we have 

F = - $ j e-ib’~fd + fI) ~0s g t + 

$. (- LA+ e-i(Ye+4 + f2j sinot =F,cosot +F,sinot 

and the boundary conditions 

Ret---vFF,+iF,‘} =o, Y =o, 1x1 >o, n = 1,2, 

ReF,‘=O, x =o, o>y>z, n = 1,2. 
Handbuch der Physik, Bd. IX. 34 
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After finding Fl and F2 satisfying these conditions, constants occurring in the 
solutions must be adjusted so that fi and f2 satisfy the radiation conditions: 

z<FJf; f vf2) = 0, .jym (f;; 7 fi) = 0 * 
Consider the function 

Then the boundary conditions imply that G1 satisfies 

ImG,=O for y=O, ]xl>O, 
ImG;=O for y=O, lxl>O and x=0, o>y>--1. 

The-function Gi may be extended into the upper half-plane by defining Gr (x + i y) 
=G,(x-iy) for y>O. Since we have assumed IF’ISB for I.zl>b>Z, we may 
conclude that I Gr I < B + C 1 z I for I z I > b and expand Gr in a Laurent series 

G,(z) =cz+d+:+$+.-, [zl>b>Z, 

where all coefficients are real since Im Gi (x + i0) = 0. The condition IFi 1 +O as 
y--f - do implies I G; I -+O as y -+ - do and hence c = 0. We may arbitrarily set 
d = o by redefinition of Yr . Further, we may show as follows that ur =O. Con- 
sider a contour containing the obstruction and lying in the region 1 .z I > b. Then 

$G,(z) dz = zni a,. 

Let this contour be contracted onto the barrier. Then, from the assumed behavior 
of Fl on the barrier, the integral vanishes; hence a, =O. Thus 

G,(z) + +%+a.. . 

Let us now exploit the boundary condition for G; by mapping the x-plane into a 
c-plane by the mapping 

2 ==p=F, 

where the branch of the square root is chosen which makes .zz.T for large 5. 
This maps the x-plane cut from --il to il, i.e. along the barrier, onto the x-plane 
cut from -1 to +l, with infinities and upper and lower half-planes correspond- 
ing. Then G; (z (Q) = Hr (0 is analytic in the whole lower half-plane with a sJn- 
gularity only at c =O, corresponding to z = - il, and Im HI (6 +io) = 0. Since 
HI (5) must agree with G;(z) for large x, HL ([) must have the form 

HI(c) =#+$+ +*a, b, real. 

The condition on @ near the edge of the barrier, implies that 1 z +iZ I I IF; I -to as 
z-t-il, or ~~4Hl(~)~-+0 as c-+0 and hence that b,,=O, ~24. Thus 

or 
HI([) =& Cireal, 

G;(z) =Ls. 
(22 + 12) 8 

Integrating, and writing Dl = Cl/P, 

GI (4 = 01 =D,&--Do, 
j/z” + z2 
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where the constant of integration has been chosen so as to make G,(z) behave 
like z-2 for large z. Then 

Fl (z) = E, emivz + D, esiv* 
zr-yx++ 

io3 ~Trezvxdz, s 

where the path of integration will be taken around the right-hand side of the bar- 
rier. The boundary condition Re &(O + i y) = 0, 0< 1 y 1 <I, relates El and D, 
as follows. From Fr (2) : 

8 
F{(z)=emivz --i~El+D1~- 

I j/zT+> 
ivD, 

s 
zdz . 

ico 122 + 12 1 
Take the path of integration along the y-axis, so that the integral becomes 

=- iZK,(vZ) ./$$dy, x=&O. 
1 

Hence 
ReF;(o+iy) =e”Y[+vImE,-vYDiP&(vZ)] =O 

or 
ImE, = + DIZKl(vZ). 

Let E, =el +iZDK,(vZ). Then 

We now compute the asymptotic expressions for Fl (z) for x+ & co. If the path 
of integration is taken on a large arc of radius R in the first quadrant and then 
to z, and if R is allowed to become infinite, it follows from JORDAN’S lemma 
that the integral may also be written xz-p+li o. pigi e~‘xdx* s 
Clearly, 

F,(z) -evivz [el+iZDIKl(vZ)] as x--f +w. 
As x--f-ca, 

--00 ~ 
F,(z) -eFiva e,+izD,K,(v4 +D, s o. 

where the path of integration passes below the barrier. By completing this path 
by a large semicircle in the’ upper half-plane, which gives a zero contribution 
in the limit, and then contracting the contour about the barrier, one sees that 

=--- 2y e-vYlJZ2-y2dy=-22nZIl(vZ). 
.I- 4 

34* 
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Hence 
F,(z) weeiva [el+iZD,Kl(vZ) - 2nZD,I,(v1)] as x--f -co. 

Similar expressions hold for F, (z) with constants e2 and D,. 
For fi and fz we have the asymptotic expressions: 

fi(.z)-e-iYZ ~ie-ia+e,+iZK~(yl)D1], i 

fi(z)-e-iva $e-iu+Ea+iZKl(vZ)DZ] I 1 

as x+-+00, 

fi(z) -e--iv8 
[ 
+ie-iCC +e, + (i&- 2n4)JD, 1 , 

fzp) ,e--iva 
I 
it/ e--icr +e,+(iK,-22nI,)ZD, I i 

as X-+-W. 

The radiation condition gives simultaneous equa- 
tions for the determination of e,, e2, Dl and D,. 
The solution may be written 

Z(D,+iD,)=-~iewiOL&~, 
1 1 

Ag. e,+ie,=- -g--z eeia 1 + 
t 

R I1 
1 nI1,+iK1 * 

Substitution in the expressions for /I and fz, 
ff 

2.5/!% 
U and computation of Fl cos ot + F, sin ot give, after 

Fig. 13. 
a somewhat tedious calculation, the following 
asymptotic expressions for @: 

@N!+yY 
{ -sin(vX+Gt++tC)+ “I1 linlat_= sin (Y X-G t- K--&J}, 

1 
x--++-J, (17.4) 

&,--AKeVY Kl 
CT -sin@% +at +a +pT), 

pc2 If + Kq 
x+--00, 

I 

where tan pR = K&c I1 = cot &-, and II = II (vl), KI = I& (vl). Clearly the reflec- 
tion and transmission coefficients are 

(17.5) 

R, T and PR = $n -/$. are shown in Fig. 13 as functions of 23tZ/jl =vZ, The reflec- 
tion coefficient is practically one if Z/A 224. 

One may now use the velocity potential to find the behavior of the fluid near 
the barrier, in particular, the water height and the pressure. The calculations 
will not be carried through, but may be found in HASKIND (1948). The elevation 
,on either side of the barrier is given by 

q(fo,t)=A 
i 
cos(ot+dC)+ ‘~~cOs(Ot+.+pR) 

In2 If + Kf 1 (17.6) 

where 

S(vZ) =$ [I,(vZ) +L,(vZ)] =[‘evlyvi- y2dy, 
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L, being a Struve function of imaginary argumentr. Let the force and moment 
about the origin, per unit length of barrier, be denoted by X and M, the former 
being positive if directed along OX and the latter counterclockwise. Then 

(17.7) 

HASKIND also computes the average force and moment per unit length of the 
barrier. The results are: 

where 
- M,=&gA2Z[S(-vZ) - T(-VZ) -s12] ,rI;:Ke., 1 

VI S(-VZ) = Qn [I,(vZ) - L,(vZ)], 

T(-VZ) =&qI&Z) -L,(vZ)]. 

Fig. 14 displays all four functions in dimensionless form. 

MLpi 
Fig. 14. 

The method of integral equations. This method for finding solutions 
has been frequently used, especially by KOCHIN (4937, 1939, 1940) and his col- 
leagues. One of its advantages is that approximate solutions to the integral 

Fig. 15. 

equation can frequently be found even when an explicit solution cannot be easily 
obtained. The following exposition follows approximately KOCHIN (1937) and 
KELDYSH and LAVRENT’EV (193 7). 

Consider a submerged obstacle whose contour C is given parametrically by 
z =z (s) and is oriented counterclockwise. Let /3(s) be the angle between the 
tangent vector and the positive x-direction (see Fig. IS). We shall assume that 

k G.N. WATSON: Bessel functions, p. 329; L, is tabulated in J. Math. Phys. 25, 252-259 
(1946). 

Ronald W. Yeung
"Surface Waves Online" - Copyright 2002, Regents of the University of California.  All Rights Reserved.



534 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 17. 

as x--f 00 the motion approximates to a standing wave: 

@(x, y, 4 NA~e~kOS(vX+M)COS(Gt+~), y=f. 
g (17.9) 

The other boundary conditions in terms of the complex potential f(x) = ~1 (x, y) + 
i p (x, Y) are 

Im{f’(X) +if(X)} =O, 
Im(f’(.z(S)) eiS(“)} = 0, 

I 

(17.10) 
lim 1 f’l = 0. 

y-s-co 
Write f (2) in the form 

f (2) = fi (2) + $ e-i(yz+a) = fl (2) + a emive. 

Then fi(z) must satisfy 
lim fr (2) = 0, 
x+cc 

(17.11) 

(17.12) 

as well as the free surface condition and the condition as y+ - co. 
We shall try to express fi(x) as a distribution of vortices over the contour C. 

However, the vortices are chosen so that the conditions on the free surface, at 
x = CO and at y = --bo are satisfied. As is apparent from the derivation of 
(13.28), the complex velocity potential for such vortices is given by 

f,(z;c) =& 
1 
log(z-cc) (z-C) -2e-ivzj~fdu}. (17.13) 

Co 

We set I’= 1 and try to express fi (z) as follows: 

fib) =J Y(S) f*(z; m) as, (17.14) 

where y(s) must be chosen so that the boundary condition on the body is satis- 
fied. 

In order to derive an integral equation for y (s), consider the following expres- 
sion for f;(z), a direct consequence of CAUCHY’S integral: 

The function gl(z) is regular everywhere outside C, and g,(z) is regular every- 
where inside C,. One may contract C, onto C and extend ga(z) analytically into 
the whole lower half-plane (or fluid strip if the depth is finite). 

Consider now (for infinite depth; the finite-depth case is analogous) the follow- 
ing function : 

The first summand is identical with gl(z) and the second is also regular in the 
whole half-plane. g(z) satisfies the same boundary conditions as f;(z). Hence 
f;(z) -g(z) is regular in the whole lower half-plane, satisfies the free-surface 
condition and vanishes as y-f - 00 and x+ + co. The uniqueness argument 
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used in the derivation of (13.28) shows that fi (z) =g (2). Thus we have 

f;(z) = &/s dc-- & I 
J [ 

f&) 
Cl G 

;t, -2iw ewivzf$ du] dc. 
co 

Now contract C, to C. Then 

or 
[fi (5) - i Q y ewiYt] eib = vt + i V, = vt 

f;(5) =v -i@+iaYe-iVC. 

535 

(17.15) 

(17.16) 
If one substitutes above, one finds that the contribution from the second sum- 
mand in f; (0 vanishes and that, since dc1d.s =eifl@), 

This identifies y(s) as the tangential velocity vt(s) at a point of the contour. 
Let us now consider the effect of letting x+z(s’), a point of the contour C. 

Then, according to the Theorem of PLEMELJ-SOKHOTSKII, 

jy(s) fi(z;z(s)) ds =:7(s) fL(z;z(s)) e-iB(s)dz(s) -+#y(s’) e-ib(S’) + 

+PVSy(s)f:(z(s’);z(s))ds, 
i 

(17.18) 
c 

whereas 
f;(z) --f v, (s’) e-iP(S’) + i ay e--ivSW = y (s’) e-iS(S’) + iav e--iva(s’). 

Hence we have the integral equation for y(s) : 

- *Y(s’) + PVj y (s) fi (z(s’); z(s)) e@(s’) ds = iA (T e-i[~8(S’)--B(S’)+~l. (17.19) 

This is really two integral equations. The imaginary part gives a singular integral 
equation of the first kind: 

PVir(s) K(s’, s)!ds = - 2nA oey~(S’)cos[~x(s’) - j?(s’) +a]. (17.20) 

The real part gives a Fredholm equation of the second kind with continuous 
kernel : 

-$ds’) +$JrW( s’, s) ds =2d oeYY(S’)sin[~~(~‘) - /?(s’) +a]. (17.21) 
C 

Here 

fi(z(s’); z(s)) e@@‘) = $-& [K(s’, s) + iL(s’, s)] . (17.22) 

The kernel K(s’, s) is of the form 

W, 4 = -& + C(s’, s) 8 (17.23) 

where C(s), s) is continuous; the first term comes from eip@‘)/[z(s’) -z(s)]. If 
the curve C is sufficiently smooth, 

lim Im 
ei8 (~7 1 

.e+s z(d) - z(s) = e’ (17.24) 

where Q (s) is the radius of curvature of C at z(s). 
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If the obstacle consists of a smooth arc, an analogous argument leads to only 
the singular integral equation above, but with y(s) now identified with the jump 
in v!(s) as one goes from the left to the right side of the arc. 

There does not seem to be a published proof that a solution to either integral 
equation exists for all v. However, KOCHIN (1936, pp. 119-126) shows the exi- 
stence of a solution for both sufficiently large and sufficiently small values of v 
for the equation of the second kind when the body is completely submerged. 

By adjusting the phases in (17.9) one may obtain two G’s which may be added 
to give an outgoing progessive wave. The behavior as x-+- 00 will then be a 
superposition of an incoming and an outgoing wave. However, one may also 
modify the preceding arguments in order to treat the pregressive-wave problem 
directly. One specifies, say, an incoming wave from the right, writes 

@(x,y,t)=+e’Ycos(vx+d)+@*(x,y,t), (17.25) 

where di* must satisfy the radiation condition, and tries to express the correspond- 
ing complex potential as a distribution of the vortices (13 23) since they already 
satisfy the radiation condition. We shall not dwell on the details except to remark 
that the problem leads to a pair of coupled integral equations since one needs a 
distribution not only of (13.20) as it stands, but also of the vortices obtained by 
replacing t by t---n/&r. This method could have been applied, for example, to 
the problem of the vertical barrier considered above. 

Dock problems. This term is generally applied to water-wave problems in 
which the obstruction is a horizontal plane of finite or semi-infinite extent, either 
submerged or lying on the surface. The solution for the semi-infinite dock in 
infinitely deep water was given by FRIEDRICHS and LEWY (1948), and at about 
the same time the same problem in water of finite depth was treated by A. HEINS 
(1948) who also allowed a restricted type of three-dimensional motion. The me- 
thods were quite different. Subsequently HEINS (1950) and GREENE and HEINS 
(1953) extended the treatment to submerged docks in water of finite and infinite 
depth. As was remarked earlier, RUBIN (1954) has shown the existence of a 
solution for the finite dock in infinitely deep water. SPARENBERG (1957) has 
deduced an integral equation of the second kind for this problem. 

As an example, consider a submerged dock at depth b and extending from 
x = -a to x = u. The integral equation (17.20) then becomes 

PV{y(t)K(x,[)d5 =- 2nAoe-“bcos(v~ +a), 
--a 

(17.26) 

where K(x, t) = K(x - 5) with 

) (17.27) 

Without actually establishing the existence of a solution to (27.26), KELDYSH 
and LAVRENT’EV (1937) in treating the flow about thin hydrofoils (see Sect. 208) 
propose an approximate method of solution by expanding y(x) and K(x) in a 
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series in z = a/2 b : 
Y(X) =YoW +y1w z +*..p 

K(x) = 5 + a 2 K, (C)“T~+~ 
12 

and determining the Y%(X) recursively. In the problem treated by them the total 
vorticity was fixed by the Kutta- Joukowski condition, in the present problem 
the corresponding condition is still to be determined. 

If the dock extends from - bo to 0, one may modify the earlier arguments 
so as to apply to an unbounded body and derive the integral equation 

PV!y(6)K(x-6)d6=-22nAoe-“bcos(vx+Ix). 
--00 

(17.28) 

An integral equation of this form is known as a Wiener-Hopf integral equation 
and in many cases can be solved by use of Fourier transforms. It does not seem 
possible to expound the method briefly, so we refer to the paper of GREENE 
and HEINS (1953) where this problem is treated, but with the kernel expressed 
differently. 

When the semi-infinite dock is on the surface, the dock may be considered 
as a limiting case of a beach in which the angle between the bottom and the free 
surface is 180”. Although waves on beaches are discussed in the next section, 
the methods which allow extension of the angle to 180” are also difficult and will 
not be considered there. They may be found in STOKER’S Water waves (1957, 
9 5.4). 

p) Waves on beaches. Let the fluid at rest be contained in the wedge defined by 

tarry5 +S I, x>O, y>o, 

i.e., the bottom is the plane x sin a + y cos CC =O. For such a body of fluid one 
may look for periodic waves which are either standing or progressive. The ap- 
propriate mathematical problem for standing wave is to find a velocity potential 

satisfying 
I. 
2. 

3. 
4. 

@ (% Y, 0 = yJ (% Y) cos cot + 7) (17.29) 

Aq~=o, 
yywa -$V(%O) =o, 
pl,siny +pYcosy =0 for xsiny +ycosy =O, 

lim 
x”+y*-+cQ 

qz + p’i = 0 for xsiny +ycosy =O. 

This problem, in both this form and the three-dimensional form to be considered in Sect. 18, 
has received intensive study in recent years (e.g., MICHE 1944, LEWY 1945, STOKER 1947, 
FRIEDRICHS 1948, ISAACSON 1948, 1950, WEINSTEIN 1949, PETERS 1950, 1952, ROSEAU 
1952, LEHMAN 1954, BRILLOU~T 1957). In particular, the cited work of BRILLOU~T and 
Chap. 5 of STOKER’S Water waves (1957) contain a general exposition of the mathematical 
theory. We shall restrict the present treatment to simple cases. 

KIRCHHOFF (1879) was apparently the first one to treat the two-dimensional 
case. The problem was taken up again by MACDONALD (1896), POCKLINGTON 
(1921), and by HANSON (1926)) who considered both the two and three-dimensional 
cases. All these authors restricted the solution to be bounded everywhere. This 
has the effect of excluding a physically important class of solutions with singu- 
larities at the origin. One may see this easily if y = 90”, i.e. when there is a vertical 
cliff. A bounded solution is obviously q~ (x, y) =A eyY cos vx, v = oz/g. This 
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generates a standing wave behaving like cos vx at x = 00. However, if we wish 
to construct a solution behaving, say, like an incoming wave at infinity we need 
also a standing-wave solution behaving like sin vx at infinity. No such solution 
exists which is bounded everywhere. However, as we shall see, it is possible to 
construct such a solution by allowing a singularity at the origin. If the two stand- 
ing-wave solutions are used to construct an incoming progressive wave, the con- 
sequent loss of energy associated with the singularity is sometimes interpreted 
physically as representing loss of energy in breaking of the waves, at least when u 
is sufficiently small for this to happen. There is, of course, no a priori method of 
selecting the mathematical solution best representing the physical phenomena. 
The comparison between physical waves and mathematical solutions is discussed 
briefly in STOKER (1957, pp. 69-77). 

KIRCHHOFF’S approach to the solution is interesting historically because of 
its similarity to the method used later by PETERS (1950) and ROSEAU (1951). 
His reasoning runs as follows, with a slight change in notation. Let f(z) =y +iy 
be the complex potential. Then 

2pl(%Y) =f(x+iy) +t(x-iY), 

2iy(x,y) =f(x+iy) -f(x-iy). 

The free-surface condition becomes 

i [f’(x) - I”(41 = v [f (x) + fix)] , v = 02/g * 
But then also 

qf'(+J(z)l =v[f(z) i-ml. (17.30) 

The bottom must be a streamline. Hence 

f (r e-+) - f(cy e”‘) = const ; 

we may take this constant as 0. From this 

Hence 
f(z) = f (2 eMi2Y) . (17.31) 

& [f(z) -f(zeMi2r)] =-iv[f(z) +f(zemi2Y)]. (17.32) 

This differential-difference equation must hold for allx for which f(z) and f (z eWi2Y) 
are both defined, namely for 

-y<argz<y. 

KIRCHHOFF’S formal arguments need to be supported in terms of analytic con- 
tinuation by the reflection principle, but the essential idea is the same as that 
used more recently (cf., e.g., LEHMAN, 1954; $j 3, or PETERS, 1950, $3). 

KIRCHHOFF proceeds to solve this equation in the special case y =mz/n, m 
and n relatively prime integers, by assuming 

n-l ,2mn 

f(z) =kzOA,exp(iivzflk), /I = e-‘n. 

Substitution in (17.32) gives 

&(pjl+l) =Ak-l(j3kjl-1), k=O )...) n-l, (17.34) 

with A-,= A,-, . Multiplying all equations together and remembering that 1, 
B , , . ., /3’+l are all s-th roots of unity, one finds 

P-(-l)“=P-I, 
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which can hold only if 12 is even, say w = 2q (hence m is odd). With 3, = - 1 =@, 
the above equations determine successively A,, . . . , A,-, in terms of A,, and 
A,=... =A,-l=o: 

A, = iA,-, cot ky = ?A, cot y cot 2y.. . cot ky. (17.35) 
Then 

9-l 
f(4 =kzoAk exp (- ivP4. (17.36) 

A, is still an arbitrary complex constant. The differential-difference equation 
is a necessary condition for f(x), but not sufficient to ensure that all boundary 
conditions are satisfied. If one substitutes the above expression for f(z) in (17.3 I), 
one finds after some computation that one must take 

A, = Bo.&“(9-l!/4 (17.37) 

where B, is pure imaginary (say i BA) if both *(m + 1) and q are even and other- 
wise is real. With this choice of A,, one has 

A,-, = &--l. (17.38) 

As Kirchhoff points out, the solution is physically acceptable for the problem 
at hand only if m = 1; otherwise, q~ does not remain bounded as x--f + co. If 
m = 1, then for y = 0, the dominant term as x--f 00 is given by 

Q1 bw - B,cos 
( 
vx +n=%r 

1 I 4 - 

Here are several easily computable special cases of (17.36) : 
y=90” (m=1,q=1, /!?=-I): 

f(z) = B, ediVz = B, eyY(cosvx - isinvx); 

y=45"(??2=1,q=2,/3=-i): 

f @) = B, e-“: [e--ivr + i e--vzs] 

=B,[eVYcos(vx+~)+e-vxcos(vy-~)]- 

- iB,[e”Ysin(vx+T) + e-YZsin(vy-F)]; 

y=30°(m=I,q=3,/3=g(1/~-i)): 

f (.z) = B, emif [e--ivx + i 13 e- &(V- 3+%)va~e-~(vs-i)vz] 

=B,{-ee"ysinv~-e-i~(~Vf+~) sin*v(X - yj/T) + 
+ l/~e-@(xVs-Y) cos*v(x + yl/T)}+ 
+iB,{- evycosyx + e-h~W+Y) COSQV(X - yl/T) - 

- j/I e-hY(*V5-Y) sin *V(X + y 1Jy)). 

(17.39) 

(17.40) 

(17.41) 

Numerical computations for v (x, y) for y =6” (q = 15) as well as for the above 
cases were carried out by STOKER (194.7) and are presented graphically in his paper. 
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KIRCHHOFF’S solution is limited to the special choice of angle noted above 
and furthermore presents only solutions which are bounded at the origin. The 
solution of the differential-difference equation (17.32) for arbitrary y, O<ys 3t, 
has been given by both PETERS (1950), ISAACSON (1950), and ROSEAU (1952, 
Chap. V). All use Laplace transforms. However, the method cannot be expounded 
briefly and we refer to either the original papers or STOKER’S Water waves ‘for 
the details. 

The special case y = 3z/2q can be treated fairly simply by the reduction method 
used in the problem of the vertical barrier. 

From (17.32) we have 

f(k+l) (2) + iv f(k) (2) = /!?kf’ f(k+l) (/3x) - iv/P f(k) (/32), k = 0, 1) . 

The free surface condition [cf. (11.7)] implies 

Im{f(k+l)(X) +ivf@)(~)} =O, x>O. 
Hence also 

Im{/?k+lf(k+l)(X~) - i~@~f(~)(~p)} = 0, x>O. 

This last equation can also be written 
Im {,‘jk+lf(k+l) (2) - iv/lkfk)(z)} = 0 for z = yeWaiY. 

If the numbers ak and ai are real, (17.43) and (17.44) imply 

Im {k$2 [ftk+r) (x) + ivftk) (x)]} = 0, 

Im { i a;@k[bf(k+l) (y ewziy) - ivftk) (Y em’i,]} = 0. 
k=O 1 

We wish to find numbers {ak} and {a;} such that 

k*oak [ftk+l) (2) + i v fck) (z)] skioai/?” [/I fck+l) (.z) - iv ftk) (z)] 

Comparing coefficients of derivatives of the same order, one finds 

a, = - aA , 
ak-l+ivak=~k(a~-l-iva~), k=l)..., s, 

a,=/F+lai. 

. . . (17.42) 

(17.43) 

(17.44.) 

(17.45) 

(17.46) 

(17.47) 

These relations will be satisfied if one takes s = q - 1 (for /?q= - 1) and 

1 #@+I ak = - a; = af+l y ~ zv /3k--1 = ak-,+cot ky, 

=$cotycot+...cotky, k= 1, . . ..s. 
(17.48) 

We note that vq-kaq-k=vk-lak-l. 
define 

With this choice of the coefficients {ak}, 

g (2) =lzlak {ffkfl) (2) + ivf’k’(Z)} = p ($) ($ + i v, f (d , 

=-~akpk(,gf’“+“(z) -;vf(k+)} =-P(@&)(/++(‘) } (47’49) 

+;ak{/(k+‘)(pz) - ivfk’(/k)} = p (2) (& - +(&) 

See separate file errata.pdf
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