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A. Introduction. 
The various problems of fluid motion treated in this article have in common 

the property that the fluid is subject to a gravitational force. In addition, in 
almost all cases they also have in common the presence of surfaces separating 
two fluids of different densities or, if only one fluid is present, of so-called free 
surfaces. However, not all fluid flows falling into this category are treated here: 
tidal motion is treated in Vol. XLVIII in the article by A. DEFANT. The observed 
properties of ocean waves and their generation by wind are treated in the article 
by H. U. ROLL, also in Vol. XLVIII. Closely related problems concerning flows 
with free surfaces are treated in the article by D. GILBARG in this volume. 

The subject of water waves engaged many of the mathematicians and mathe- 
matical physicists of the last century. Moreover, the last several years have 
brought a renewed interest in the theory of water waves. In addition to this 
extensive literature on theoretical aspects of the subject, there have also been 
many experimental investigations, usually carried out by hydraulic engineers. 
Hydraulic engineers have also produced an extensive literature, both theoretical 
and experimental, on open channel flow, flow over weirs and through sluice- 
gates, etc. ; included is a considerable literature on numerical and graphical 
methods of solving the equations involved. Oceanographers have produced their 
own literature, usually emphasizing different aspects of the subject. The theory 
of ship waves has produced its own literature. 

All this material is pertinent to this article. Clearly some selection has to be 
made. We have followed roughly the following rules: Fundamental results are 
derived in full. The treatments of various special problems are selected so as 
to exemplify particular methods, other methods being mentioned only by litera- 
ture citation. Experimental results are not usually reproduced, but references 
are given. Numerical methods of solving equations are not treated at all. The 
more special problems of hydraulic engineering are also not treated. Geophysical 
aspects which are omitted have already been mentioned. 

Several excellent expositions of the theory of waves or of various parts of 
it already exist. We mention the following2: LAME [1932, Chaps. VIII (pp. 250 
to 362) and IX (pp. 363-475)]; BASSET [I%%, Chap. XVII (pp. 144---187)]; 
WIEN [1900, Chap. V (pp. 166-224)]; KOCHIN, KIBEL’, and ROZE [1948, Chap. 8 
(pp. 394-526)]; MILNE-THOMSON [1956, Chap. XIV (pp. 374-431)]; AIRY (1845); 
BOUASSE (1924) ; AUERBACH (1931); THORADE (1931); SRETENSKII (1936); 
KHRISTIANOVICH (1938); KEULEGAN (1950); ECKART (1951); and STOKER (1957). 
The last cited book by STOKER gives an up-to-date account of much of the 

1 Chaps. A, B, C, D, F, G were prepared by J.V. WEHAUSEN, Chap. E by E.V. LAITONE. 
The former is much indebted to the Office of Naval Research, U.S. Navy, for support during 
the preparation of his chapters. 

a References are collected at the end and identified in the text by author and date. 
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Sect. I. Coordinate systems and conventions. 447 

fundamental theory. For observation of waves of many kinds, CORNISH (1910, 
1934) und MICHE (1954) should be consulted. SHULEIKIN [1953, part 3 (pp. 213 
to 292)] contains a general discussion of topics of interest in oceanography. 
RUSSELL and MACMILLAN (1952) give a rather nontechnical discussion of ocean 
waves. A volume published by the Society of Naval Architects of Japan (Z&en 
Ky6kai) contains expository papers on various aspects of water-wave theory 
related to ships [see MARUO (1957), J INNAKA (1957), NISHIYAMA (1957), BESSHO 
(1957), and INUI (1957)]. 

For extensive bibliographies one should consult THORADE (193 1, pp. 195 to 
211) ; SRETENSKII (1936, pp. 294-303) ; KAMP~ DE FBRIET (1932, pp. 225 -229) ; 
and STOKER (1957, pp. 545-560). SRETENSKII (1950, 1951) in a survey of the 
accomplishments of the USSR during the years 1917---1947 has given a rather 
complete bibliography of Russian papers during those years. TAKAO INUI (1954) 
has included a valuable bibliography of Japanese papers in a survey of Japanese 
contributions to the theory of ship waves. An interesting early history of the 
subject may be found in a paper by ST. VENANT and FLAMANT (1887). The 
treatise by the WEBER brothers (1825) is still of interest for its content, and 
especially for its many references to and summaries of the early papers on water 
waves. The section on waves in the article on hydrodynamics by LOVE (1914), 
as modified by APPELL, BEGHIN and VILLAT, in the Encyclo$tdie des sciemes 
math&matiqzces gives brief indications of the contents of many of the papers 
published up to about 1912. 

B. Mathematical formulation. 
1. Coordinate systems and conventions. In the mathematical description of 

waves one may, as in fluid mechanics in general, describe the motion by describ- 
ing either the paths of individual fluid particles (“Lagrangian” description) or 
the velocity (and acceleration) field in the region occupied by fluid at a given 
moment (“Eulerian” description). Generally, but not always, the Eulerian des- 
cription will be used. 

Rectangular coordinates may be used conveniently for almost all problems. 
The y-axis will be taken directed oppositely to the force of gravity, the x-axis 
and z-axis so as to form a right-handed system (i.e., if the y-axis is toward the 
top of the page and the x-axis is toward the right, the z-axis will point toward 
the reader). This is a somewhat unconventional choice for the z-axis, but has 
the obvious advantage that in two-dimensional problems one can delete z-depen- 
dent terms from the equations, have conventional (x, y) coordinates, and set 
z = x + i y without ambiguity when complex-variable methods are convenient. 

It seems hardly worth while to try to formulate rules concerning when a 
moving coordinate system is preferable to a fixed one. However, use of a moving 
coordinate system is clearly convenient in those cases where it allows one to 
formulate a problem in a time-independent manner. 

The following well-established convention with regard to use of certain letters 
will be adhered to. The components of the velocity vector v will be denoted by 
zt, v, w the pressure by fi and the density by Q. The coefficient of viscosity of 
the fluid will be denoted by ,u, the coefficient of kinematic viscosity, P/Q, by v. 
The acceleration resulting from gravity is denoted by g. 

In the Eulerian formulation one seeks v, fi and Q as functions of x, y, z, t 
i.e., at any instant t one seeks a vector function and two scalar functions defined 
on the region occupied by fluid at that instant. In the Lagrangian system one 
focuses attention on the trajectories of individual particles in the fluid: if a, b, c 

See separate file errata.pdf
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are the coordinates of a particle at time t =O, then one seeks the position 
~(a, b, c, t), y (a, b, c, t), ~(a, b, c, t) of this point at a later time t. One may pass 
from one system to the other by means of the equations 

dx 
- = zd(% y, x, t), dt g = ZJ (x, y, 2, q> g = w (% y> 194 (1.1) 

with x = a, y = b, x = c at t =0 as initial conditions. 
2. Equations of motion. Derivations of the fundamental equations describing 

fluid motion are available in many places (e.g., Vol. VIII, Part 1 of this Ency- 
clopedia). The equations are reproduced here for convenience of reference. 

The equation of continuity in Eulerian coordinates is 

If the fluid is incompressible, but not necessarily homogeneous, dp/dt = 0 (but 
not necessarily se/at =0) and Eq. (2.1) becomes 

g+g+g=o. (2.2) 

In Lagrangian coordinates this may be written 

e (x, Y, z,t) D = e (a, b, c, 0) (2.3) 
where 

D= 

For an incompressible fluid Q (x, y, z, t) = Q (a, b, c, 0) and (2.3) becomes 

ax ax ax 
aa ab ac 

ay ay ay - - -. 
aa ab ac 
az az 'a~ 
aa ab a8 

D =I. (2.4) 
The dynamical equations take different forms according as one does or does 

not try to take account of viscosity. The Navier-Stokes equations for the motion 
of .an incompressible viscous fluid, when the only external force is that of gravity, 
are as follows in Eulerian coordinates: 

g+++vg+w+ -$+;Au, 

~+~~+v~+w~=-s-~~~+$Av, 7 (2.5) 

$+u~+t,$+w;+ +$f+$Awe 
I 

If viscosity is neglected, the last two terms on the right side of the equations are 
to be deleted and one obtains the equations for an “ideal” fluid: 

~+&+vg+wg= -$$ 

~+~?T+v!c+w.!~-=-g-c& I (24 
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Sect. 2. Equations of motion. 449 

In Lagrangian coordinates the latter equations become: 

~;~+(g+~j??+?!t;~~ =_ .;..!A,’ 

~.~~+jh’+~~j~X+~~.=_~~~, , (2.7) 

5!2! .g. + (g + Gt; 
1 

z +.g !f!g=-;~~. 
I 

The equations of two-dimensional motion result if one deletes all terms con- 
taining z, W, and c. 

The motion is called irrotational if it satisfies the additional equations 

aw a~ -=o, g-$+0, ;+-f$=o, ay a.2 (2.8) 

or, in two-dimensional motion, 
av a24 
ax ay = 0. (2.8’) 

In the case of irrotational motion there exists a potential function @(x, y, z, t) 
such that 

a0 a@ a@ 
u=z> v=ay, w=,;. (2.9) 

It is a classical theorem of hydrodynamics [cf. LAMB (1932, $0 17, jj)] that, 
if the motion of an inviscid fluid with Q = Q (fi) is irrotational at any instant, it 
is so thereafter. In particular, a motion started from rest is irrotational. 

If Q =Q($) is the equation of state, the following integral of the equations 
of motion exists for irrotational motion: 

where 

g+++02+w2) +gy+P=A(t) 

P = j$-l d$ 
Pa 

(2.10) 

and A(t) is an arbitrary function of t. If the fluid is incompressible, the usual 
case in this article, Q is independent of fi and the integral becomes: 

g+++(u2+02+w2) +gy+yw(t). (2.10’) 

In this case one obtains also from (2.2) and (2.9) 

(2.11) 

Even if the motion is not irrotational, there still exists an integral like (2.10) 
if the motion is steady, the so-called Bernoulli integral: 

*(u”+v”+w2) +gy+p=c. (2.10”) 

Here C is constant along a single streamline: 

ax dy dz 
-----=u(x,y,4, -~~=“(%YJ), -~t-=w(%y,z), at 

but may vary from one streamline to another. 
Handbuch der Physik, Bd. IX. 29 
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There will be occasion in the following to treat problems in moving coordinate 
systems. Let Oxyz be a fixed coordinate system and 8XyZ be a system moving 

d - 
with respect to Oxyz but without rotation. Let v,, be the vector d,OO, the 

velocity of a particle referred to 0 x yz be v and to C%yl be SE. Then v = E + vO. 
We shall generally want either to describe the absolute motion v with respect 
to the moving coordinate system 03iyZ or. the relative motion V with respect to 
this coordinate system. In either case the continuity equation remains the same 
in form 

or 

The dynamical equations for an ideal fluid for the absolute motion described 
in the moving coordinate system are: 

I (2.14) 

The dynamical equations for the relative motion are: 

(2.15) 

Let us suppose that the motion is irrotational and let @(x, y, .z, t) be the velocity 
potential for the absolute motion in the fixed coordinate system. Let 

~(x,y,z,t)=~[~+j21,dt,g+jv,dt,f+~w,dt,t)=~(a,g,z,t). 

Then 6 is the velocity potential for the absolute motion in the moving coordinate 
system : 

a6 a@ a6 -=g,4, --z-z+& 

The integral (2.10) beco:s: ’ 

ay ’ yg =w. 

g $- 5 [(u - uo)2 + (v - 710)2 + (w - WJ”] f- gjj + P = A(t)) ’ (2.16) 

where x(f) = A (t) + #(u; + V: + ze$) - gi u0 dt. If one defines 5 by 

5(Z,T,W) =~(~,~,X,t)--UO~--OO~-w~z, 
then 5 is the velocity potential for the relative motion: 
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Sect. 3. Boundary conditions at an interface. 451 

and the integral (2.10) may be written: 

~~~+zi,a+i,,g+Ib,z+~(iir--;--v2+~2) fgji$P=A(t). (2.17) 

The more general equations when the system o%y? is also rotating will not be 
necessary for this article. 

3. Boundary conditions at an interface. Let us now suppose that we are given 
two immiscible fluids with a common boundary surface, S(i). The one fluid, 
with density e1 and viscosity ,ul, will occupy region R,(t) ; the other, with density 
e2 and viscosity ,u2, the region R,(t). Let F(x, y, z, t) =0 describe the surface 
S(t); we assume Fj+FJ+ F,“>O (where F,=aF/ax, etc.). 

The first. condition which the surface S(t) must satisfy is a kinematic one. 
As the surface moves, the velocity of a point (x, y, z) on the surface in the direc- 
tion of the normal to the surface is given by --F,///Fj++F,2+ F,“. Here one takes 
the normal in the direction (F,, Fy , FJ. A particle of fluid at the same point of 
the surface at that instant will have a velocity component in the direction of the 
surface normal given by ~4s vFy+ wF, ljF,2+FzSFa = 0,. For S(t) to be a bounding surface 

means, of course, that there cai bi no transfer of matter across the surface. 
Consequently the following equation must be satisfied: 

uF,+vF,+wF,=-F,, (3.1) 
where we have used the assumption F,” + Fy2f F,“> o in dropping the denominators. 
If one defines the “material derivative” by the equation 

DF __ =GF~+vF~+wF~+F~, 
Dt 

then (3.1) is the same as 
DF 

- =o. Dt (3*1’) 

This condition must be satisfied by any bounding surface, whether an interface 
or a rigid boundaryl. e. 

There are further dynamical conditions to be satisfied at an interface. Let 
us first consider the general case of viscous fluids with surface tension at the inter- 
face. The following assumptions are made: 

1. The effect of surface tension as one passes through the interface is to produce 
a discontinuity in the normal stress proportional to the mean curvature of the 
boundary surface. 

2. For viscous fluids the tangential stress must be continuous as one passes 
thr’ough the interface. 

3. For viscous fluids the tangential component of the velocity must be con- 
tinuous as one passes through the interface. 

In order to formulate these statements in mathematical language, we intro- 
duce the following notation. Let g(x, y, z) be some function defined in both R, 
and R, and let (x0, yO, zO) be a point of the interface S. Assuming that the follow- 
ink limit exists, we shall write 

1 For further discussion of this condition see C. TRUESDELL: Bull. Tech. Univ. Istanbul 
3 (1950), No. 1, 71-78 (1951); L. LICHTENSTEIN: Grundlagen der Hydromechanik, pp. 159 to 
170, 234ff. Berlin: Springer 1925). 

29* 
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452 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 3. 

and 
~~~~,~Yo~~o~l=~,~~o~Yo~~o~-~~~~o~Yo~~"~. 

Let the components of the stress tensor be denoted by 

* x.x ~.%.v uz, 

OYX *YY @YX 

0 ax %y 02,. 
Consider an element of area of the surface S at a point (x, y, Z) of S. Let the unit 
normal vector to S at (x, y, z) be (I, m, PZ). Then the surface element will have 
associated with it the stress vector with components: 

d + f3.ym + o,,n, oyxJ + ayym + oyjan, cd + O,,m + o,,n. 
Let R,,and R, be the principal radii of curvature of S at (x, y, x). Then I. and 2. 
are combined in the one equation 

[GJ + azrm + @s,nl = T(Ril + Ril) 1, 

[o,d + oyym + ay8nl = T(Ri’+ Ril) m, 0.2) 
[d + o,,m + a,,nl = T(Ril + Ril) n, 1 

where T is a constant of proportionality depending upon the two fluids (and 
their temperatures, but this will not be considered here). T is called the coeffi- 
cient of surface tensionl. 

The kinematic condition imposed in (3.1) is clearly equivalent to continuity 
of the normal component of the velocity as one passes through S. Consequently, 
the condition 3. above may be combined with this to give 

%=%, v1= vat Wl=W,. (5.3) 

In the linearized theory of viscosity the stress tensor for an incompressible 
fluid is given by 

+-2P% -P by + 4 -P k%+ Yz) 

-P (vL+Q P--2/4 74J -P (vz+ WY) 

i 

6 *4) 
-P P-% +%) P 6% + 4 P-2/4%. 

The gcomctric quantity Ril+Ril is given by the formulas 

The sign is so selected that, if it is positive, the direction of increase of the normal 
component of the stress vector at the interface is in the direction 

1 For an air-water interface T= 72.8 dynes/cm at 20’ C, for mercury-air interface 
T = 485 dynes/cm at 20’ C, for a mercury-water interface T = 412 dynes/cm, for benzene- 
air T = 28.9 dynes/cm at 20’ C, for liquid helium-helium vapor T = 0.24 dynes/cm at - 270~ C. 

a See, e.g., A. DUSCHEK and W. MAYER: Lehrbuch der Differentialgeometrie, Vol. I, 
pp. 150- 152. Leipzig u. Berlin: Teubner 1930. 

See separate file errata.pdf


Ronald W. Yeung
"Surface Waves Online" - Copyright 2002, Regents of the University of California.  All Rights Reserved.



Sect. 3. Boundary conditions at an interface. 453 

In the case of a surface given by y =q (x, z) Eq. (3.5) becomes 

(3.5’) 

where the direction of increase is upwards. In the case of two-dimensional motion 
this simplifies further to the well-known formula 

rlrx 
FG$’ 

(3.5”) 

If one now substitutes (3.4) to (3.6) in (3.2), one obtains the general boundary 
condition at the interface. The result is unwieldy in its general form 1. 

If the interface is given by y =)7(x, z), the boundary condition becomes 

[P1%-{2[P%l%- I$(~~ + VA1 + [PC%+~Jl%) = T&l+ %I) TX, 
Ml + {[P(~z+ @$)I%- 2[/43J + [/JU~X+ wJl%} =: T&l+ K’) P 

I 

(3.7) 

r~l%-~b(% +%)I%- bJu=J, +%)I +2[P%lrlz~ = v;l+ w ?Ih- 
with Ril+ R$ given by (3.5’). Here fluid, is the lower and fluid, the upper fluid. 
For two-dimensional motion the equations take the following form: 

One may also write this condition in terms of the components of the stress vector 
normal and tangential’ to the interface : 

Ml 
2[p(t+--y)lr'+ rP(~y+%)lw2- 1) =o 

(1 + q2)* 

rl”(4 
(1 + r)‘2)1 

0 3’) 

If surface tension is to be neglected, one obtains the resulting boundary con- 
dition by setting T = 0 in the various equations above. In this case, Eq. (3.2) 
simply states the continuity of the stress vector as one passes through the inter- 
face. 

If viscosity is neglected, but not necessarily surface tension, the condition 
on the stress vector becomes simply 

[$I = Vi1 + R2) > (3.9) 

where, of course, the mean curvature is still given by (3.5). The other boundary 
condition (3.3) changes more drastically upon neglecting viscosity : Condition 3. 
stating the continuity of the tangential component of velocity is abandoned. 
The continuity of the normal component, i.e. (?.I), is still retained, of course. 

1 In tensor notation the condition is somewhat more perspicuous: 

where (x1, x2, xs) = (x, y, z), (ul, u2, zts) = (u, v, w) and JJi= ZF/i?xi. We have refrained from 
using tensor notation because its particular advantages cannot in general be exploited here. 
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Condition 2. concerning the tangential stress is satisfied vacuously for an inviscid 
fluid. 

So far we have considered the boundary condition at an interface between 
two fluids. If the second fluid is absent, the boundary surface for the first fluid 
is called a “free surface”. Usually the pressure above a free surface is assumed 
to be some given function, say p2(x, y, z, t), of position and time; in most cases 
it is taken to be a constant, either an assumed atmospheric pressure or zero, 
The boundary conditions concerning the stress vector at a free surface are slight 
modifications of those for an interface, and can be obtained by setting ,LL~=o, 
A,=O. The result is again somewhat unwieldy in its complete formr. For an 
incompressible fluid it is: 

~-~)F,+F~{~~,F,+(~~+~,)F,+(~,~~*)F,}=T(~~~+R~~) F,, 

G-P) Fy + p {(vx + %J F, + 2 74 F, + (v, + wy) F,} = WY + W) Fy, 

i 

(3. I 0) 

~;-~)F,+~~(~~+~,)F,+(~,+~~)~+~V,F,}=~(~~’+~~~)F,. 

Here we have written F for p,, and p for ,ur; F, #, ux, . . . are to be evaluated at 
F(x, y, z, t) =o. 

The case with which we shall be chiefly concerned is that of an inviscid fluid 
without surface tension and with 5 (x, y, z, t) =$,,, a constant. In this case the 
boundary condition reduces to the single equation 

P 6% Y, z>4 = Al O*ll) 

on F(x, y, z, t) =O. If the motion is irrotational and incompressible, one may 
determine fi explicitly from (2.10') so that (3.10) becomes 

@t+g(~2+v2+~2) fgy =A@) (3*11’) 

to be satisfied on F(x, y, z, t) =O. 

In the case of steady motion of an incompressible fluid, the Bernoulli integral 
(2.10”) still exists even if the motion is rotational. Consequently, in certain two- 
dimensional problems of steady motion in which the free surface is a streamline 
one continues to have a boundary condition like (3.10”): 

&2+v2) +gy+$=C, 
to be satisfied on F(x, y) =O. 

4. Boundary conditions on rigid surfaces. Let the equation of the rigid surface 
be given by the equation G (x, y, z, t) =O. Then in the case of an inviscid fluid 
the condition to be satisfied on G = 0 is the same as the kinematic condition (3 .I) : 

uG,+vG,+wG,=-Gt, (4.1) 

i.e., the component of velocity of the fluid normal to the surface must equal the 
velocity of the rigid surface in the direction of its normal. 

ff’the fluid is viscous, it must stick to a solid boundary and move with it 
without slippage. An equation of the form G (x, y, z, t) =0 is not suitable for 

1 In tensor notation it may be written: 

Here we have written 3 for pz and i, ,U for I,, pl. All variable quantities in the braces are, 
of course, to be evaluated at the free surface F = 0. 
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formulating this statement in equations (e.g., x2 + y2 +z2 = a2 does not distin- 
guish between a rotating and a stationary sphere). Let the surface be given in 
parametric coordinates by: x = X(r, s, t), y = Y(r, s, 1), z =Z (y, s, t), where a 
given point on the surface corresponds to a given pair of values (r, s). Then the 
condition for viscous fluids may be written: 

If a solid boundary penetrates the free surface (or an interface) of a viscous 
fluid, there will be some difference in treatment of the boundary condition accord- 
ing as the fluid wets the surface or not. In the case of mercury sloshing in a clean 
glass basin, the fluid pulls free of the surface as it moves up and down, whereas 
water in the same basin will continue to adhere to any part of the walls already 
wetted. Furthermore, if surface tension is taken into account, the angle of contact 
of the free surface with the solid surface will enter into the boundary condition; 
in the first case mentioned above the angle may vary according as the liquid 
is rising or falling along the walll. Although attempts to prove very general 
existence theorems for fluid motion would presumably take such complications 
into account, they are usually neglected in most solutions of special problems, 
there being indeed little choice in the matter. 

5. Other types of boundary surfaces. Geophysical problems sometimes suggest 
situations in which there is an interface between a fluid and an elastic medium. 
This may occur, for example, in the study of the effect of ocean waves on the 
ocean floor, as in LONGUET-HIGGINS’ (1950) theory of microseisms. Other possi- 
bilities are suggested by wave motion on a body of water covered with an ice 
sheet or at an interface between two fluids separated by an elastic membrane 
or plate. In one series of investigations the ice sheet has been assumed broken 
into pieces small with respect to the prevalent wave lengths. In this case only 
the density of the ice layer enters into the modified boundary condition [see 
PETERS (1950), KELLER and GQLDSTEIN (1953), KELLER and WEITZ (1953), 
SHAPIRO and SIMPSON (1953)]. W aves in a thin plate over an infinitely deep 
fluid have been considered briefly by LANDAU and LIFSHITS (1953, pp. 762-76)), 
but with neglect of gravity. GREENHILL (1887, p. 68; 1916) included gravity. 

The kinematic boundary condition (3.1) must always hold. The dynamical 
conditions will depend upon the nature of the assumptions. The matter will 
not be further considered here. 

C. Preliminary remarks and developments. 
6. Classification of problems. Most of the theory of water waves is concerned 

either with elucidating some general aspects of wave motion or with predicting 
the behavior of waves in the presence of some special configuration of interest 
to oceanographers, hydraulic engineers, or ship designers. Unfortunately, even 
some of the apparently simplest problems have proved too difficult to solve in 
their most complete formulation. Approximations have been necessary, and in 
many cases the problems which have been solved are those which could be solved 
by the approximate methods in use. An examination of the theory also shows 
that many of the concepts and definitions are almost inextricably bound up with 
these methods of approximation, following rather than preceding the making 
of the approximation. 

1 See, e.g., R. S. BURDON: Surface tension and the spreading of liquids, pp. 76-82. 
Cambridge 1949. 

Ronald W. Yeung
"Surface Waves Online" - Copyright 2002, Regents of the University of California.  All Rights Reserved.



456 JOHN V. WEHAU~EN and EDMUND V. LAITONT: Surface Waves. Sect. 7. 

The nature of the approximations used in treating a particular problem pro- 
vides a natural way of classifying it. First there are the assumptions concerning 
the properties of the fluid: viscous or inviscid, compressible or incompressible, 
surface tension or not. Although assuming the fluid to be inviscid, incompressible, 
and without surface tension simplifies the equations, they are still not easily 
manageable, even for the simplest kinds of problems. Other approximations of 
a different nature are required. These are in a sense mathematical approximations. 
Their physical significance is not in restricting the nature of the fluid but in 
restricting the character of the waves and the boundary configuration. The 
kind of mathematical approximation used provides another means of classify- 
ing problems, and is the principal one which will be used in this article. There 
are two principal methods of approximation, explained below in Sect. 10, the 
infinitesimal-wave approximation and the shallow-water approximation. Thus, 
the development of these two approximate theories and of the exact theory 
constitutes the bulk of this article. 

7. Progressive waves and wave velocity. Standing waves. It will be convenient 
to call any motion of a fluid in a gravitational field with a free surface or an’inter- 
face a wave motion. 

If the velocity components, pressure, and free surface or interface may be 
expressed in the form 

v = v (x - c t, y, 2) , fi=fi(x--t,y,z), y=q(x-ct,4, 

respectively, then the wave motion will be said to be a $rogressive wave travelling 
in the direction OX. In this case a change to a moving coordinate system with 
x’ = x - ct, y’ = y, z’ = z reduces the motion to steady motion with respect to 
the moving coordinate system, With respect to the fixed coordinate system the 
profile of the free surface or interface is being transported without change of 
form in the direction Ox with velocity c. It might seem reasonable therefore to 
call c the velocity of propagation of the progressive wave. 

However, STOKES (1849; or 1880, pp. 202ff.) has pointed out that the velocity 
of propagation of the profile of the free surface does not by itself give a useful 
definition of wave velocity. Let the fluid be inviscid, either infinitely deep or 
with a horizontal bottom, and unlimited otherwise. Now let the whole fluid 
in the progressive wave described above be transported with velocity C (positive 
or negative) in the direction Ox. Then the motion will still be consistent with 
the laws of f&id mechanics, the various parts of the fluid will move the same 
relatively to -each other, but the velocity of propagation of the profile will be 
arbitrary, depending upon the choice of C. --What is required for a useful definition 
of wave velocity is the velocity of propagation of the profile with respect to a 
coordinate system fixed in some sense in the fluid. 

In the case of an infinitely deep fluid, if the axes may be chosen so that as 
y-f - 00 the velocity relative to these axes vanishes, then one may reasonably 
measure the profile velocity with respect to these. If the motion far ahead or 
far behind the disturbance approaches a uniform velocity (possibly zero), then 
axes moving with the fluid with this velocity may be used. When the disturbance 
does not behave thus (as in the case of periodic waves) and when the depth is 
finite, there is no longer an obvious way to select a set of reference axes. 

In order to put the problem somewhat differently, let us assume that the wave 
motion is given as a steady motion with velocity field a(~, y) and free surface 
y =q (x). We wish to find a moving coordinate system x’ =x--u& y’ = y, 
so that in some sense the relative motion vanishes on the average. We now have 
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the free surface given by y’ =q (x’ + z@) and the relative velocity by w’(x’ +uot, y’) 
= 2, (x’ + u,, t, y’) - u,, i. How is uO to be chosen ? STOKES made two suggestions. 
One is to define it by the equation 

b rl(x’+%t) 

lim _~ 1-m dx’ 
a---co, b-see b- a s s 

u’(x’+ 240 t, y’) dy’ 
a --h 

b r) (xl 
, (7.1) 

= 
a,:;$,,t, dx s .I [u(x, Y)--0ldy =o> 

La -h 

where y = -h is the equation for the bottom. In case the motion is periodic, 
with period 1, the defining equation may be written 

jdx;[[u (x, y) - uo)] dy = 0. 
0 

(7.2) 

If’ one notes that the mean depth is given by 

then one sees that, with h’ as mean depth, 

uoh’= Q (7.3) 

where Q is the average discharge rate per unit width. u,, is thus defined so that 
the average discharge rate with respect to the (x’, y’) coordinate system is zero. 
u0 is usually denoted by c’. 

STOKES’ other suggestion was to define ztO by 
T 

~mm+/id(x'+uot, y')dt =o 
-+ 

0 

(7.4) 

or 

uO= lim -IL 
T+m T 

‘z4(x'+u0t, y')dt 

0 
x’+u, T x’+lZ 

= lim 1 
T--tm%l T s 

24(x, y) dx = lim j- 
a+bo a s u(x,y)dx. 

x’ x’ 

If u is periodic in x with period A, one may write 
X’fl 

uo= L 
a s U(% Y) dx. (7.5) 

x’ 

In either case, for the definition to be useful zto must be independent of x’ and y. 
If u is bounded, it follows easily that au,/ax’ =0 for both cases. If the motion 
is irrotational, zbY = v, and it follows again that ati,/ay = 0 if u is bounded. Wave 
velocity defined in this manner is usually denoted by c. For the two special 
cases considered earlier, the two definitions coincide. 

The definition of wave velocity in cases where the motion’cannot be reduced 
to a steady motion is no longer straightforward. In many cases of interest, the 
asymptotic behavior of the motion for large positive or negative x allows one to 
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define a wave velocity in a manner similar to that above. In more complicated 
wave motions one may simply follow the motion of some special phase of the 
profile, say a crest. This provides, for example, a definition of phase velocity 
for a cylindrical wave. 

A general definition of standing zvave is somewhat more awkward to formulate 
than that for a progressive wave. For the case of a plane wave, the free surface 
y =q (x, t) must be periodic in each of x and t, with wave length il and period z, 
say. In addition, the curves in the (x, t)-plane represented by “17 (x, t) = 0, where 
y =O is the undisturbed surface, must consist of two sets of curves oscillating 
about the lines x = in1 and t = inz, n =O, & 1, . . . . For progressive waves the 
curves q (x, t) = 0 consist of a single set of straight lines, all parallel to x- ct =O. 
The prototype for the standing wave is the surface defined by, say, y =sin 2zzx/3L x 
cos 2nt/z. However, as shown by both PENNEY and PRICE (1952b) and by 
SEXERZH-ZENKOVICH (1947), neither set of curves r (x, t) =0 consists of straight 
lines, or even fixed curves, for standing waves of finite amplitude. 

There remains the problem of establishing that progressive and standing 
waves exist under suitable boundary conditions. For the exact boundary con- 
ditions for a perfect fluid, the existence of progressive waves was first established 
by LEVI-CIVITA (1925) and NEKRASOV (1921, 1922). The existence of standing 
waves satisfying the exact boundary conditions is apparently an open question. 

8. Energy. Let T(t) be a region occupied by a perfect fluid with a boundary 
S(t) represented by 

q%Y,&t) =o, 

the representation being chosen so that (F?, F$ , F’) is in the direction of the exterior 
normal. The surface S(t) moves independently of the motion of the fluid. It is 
assumed that T(t) contains no singularities of v and that surfacec tension does not 
act upon the surface S(t) at any time. The energy of the fluidcontained in T(t) ~ 
is g&en by (8.1) 

For irrotational motion of an inviscid incompressible fluid, one may use (2.10’) 
and express E by 

E = /+/-J[--+~g]dr. 
‘Tit) 

[Here di has been redefined so that A(t) may be set equal to zero.] One may now 
compute dE/dt by using the general formula: 

One finds [cf. F. JOHN (1949, p. Igff.), which we follow closely here] : 

by GREEN’S Theorem and the equation of continuity. Finally, 

Ronald W. Yeung
"Surface Waves Online" - Copyright 2002, Regents of the University of California.  All Rights Reserved.



Sect. 8. Energy. 459 

We recall that --q/vFj +F,2 +F,2 is the velocity of S(t) in the direction of the 
exterior normal. Two cases are of special interest. If S(t) is a “physical” bound- 
ary, i.e., one moving with the fluid, then the first summand vanishes and one 
finds 

dE 

dt 
=-&gdu 

h 

(S-3) 

[cf. LAMB, Hydrodynamics, p. 9, Eq. (5)]. If S(t) is a fixed “geometrical” 
boundary, then 6 =O and one gets 

dE ’ 

dt 
= U’e IP,;;do. 

s%, 

(8.4) 

If one considers any portion of S(i), then the integral of (8.2) taken over this 
portion and with a minus sign gives the rate of flow of energy through this portion 
of S (t). In case a part of S (t) is a physical boundary which is fixed, 8 CD/an = 0 
and the flow through this part is zero. The same conclusion holds for any portion 
of S(t) that is a free surface, for then fi =o. 

If one has a progressive wave moving to the right with @(x, y, Z, t) = 
pl (X -ct, y, z) and takes S as a region in the fixed plane x = CC,,, then the rate of 
flow of energy through S in the positive direction is given by 

~Sec~~(x,--tt,y,z)dydz>o, 

i.e., energy always flows in the direction of the wave. 

(8.5) 

In cases where one is dealing with waves generated by moving bodies, it is 
frequently possible to choose the region T so that no energy is lost from it, the 
latter being true only as an average if the motion is periodic in time. As an example, 
consider a body moving steadily with velocity c in the x-direction in an infinite 
ocean with horizontal bottom. In addition to the boundary conditions on the 
body, free surface, and bottom, we assume that the motion vanishes (in the 
limit) far ahead and to the sides of the body. The surface S(t) may then be 
chosen as a plane M : x - c t - a = o far ahead, another plane N : - (x - c 1) + b = 0 
behind the body, planes R and L : z = f a on either side, and the bottom H, 
the wetted surface of the body B, and the part of the free surface F included 
between the body and the planes. The energy within this region is clearly con- 
stant, and one easily obtains, with @(x, y, z, t) = q~ (x - ct, y, z) : 

Since on B one has av/an = c cos (n, x), one finds for the first integral, remember- 
ing that n points into the body, 

- 
ss 

p $ do = - cJ/, cos (n, x) da = R c, 
B B 

where R is the force on the body. The parts of the second integral over M, R, L 
vanish as a-+ CO and similarly for the first summand in the third integral. The 
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terms in ~g y give 

--a -h 

which, as a-3 co, converges to 

- &.lgjT/(b, 2) dz. 
-cc 

One obtains finally 

R = QQ .l-dzJ [- qt(b, y, 2) + v$(b, y, 4 + yt(b, Y, 41 dy + 
--03 -h 

+ &&(b, 2) dz. 

(8.6) 

-m 

This exact formula for resistance will be put into a different form later after 
linearization of the boundary conditions. Although the plane x - et = b may be 
taken at any distance behind the body without destroying the.validity of (8.6), 
it is usually convenient to take it so far behind that asymptotic expressions for pl 
can be used. 

If in (8.1) a part of the surface S(t), say S,(t), is an interface with another 
fluid with surface tension acting, then the energy is given by 

E =j-"r.m?(~2+~2+~2) +egYldz+ T&do. (8.7) 
T(t) 1 

Let S,(t) be bounded by the curve C(t) given parametrically by x(s, t), y(s, t), 

.z (s, t) and let S(t) = S,(t) + S,(t). Then the formula analogous to (8.2) is 

If S,(t) is a free surface, then the boundary condition 

where $,, is an assumed constant pressure implies that there is no flux of energy 
through S, . 

If the motion is two-dimensional, with S, given by y = 11 (x, t), x1 (t) 5 x 2 x2(t), 
then (8.7) becomes 

x8(t) 
E(t) = ~~[)e62+~2)+eg~lda+~~,d" (8.9) 

+(t) 1 
and (8.8) becomes 

If S, is a free surface, the integral over S, may be dropped by suitably redefining $. 

See separate file errata.pdf


Ronald W. Yeung
"Surface Waves Online" - Copyright 2002, Regents of the University of California.  All Rights Reserved.



Sects. 9, 10. Expansion of solutions in powers of a parameter. 461 

9. Momentum. Expressions for rate of change of momentum may be derived 
which are analogous to those for rate of change of energy. With 

M=SS.hvdv (9.1) 
T(t) 

and otherwise the same notation as in Sect. 8, one finds 

Here the first line of (9.2) is derived by a direct computation of dM/dt with 
v =grad @; the second is derived analogously to (8.2); the third follows directly 
by use of (2.10’). Comparison of lines one and three gives the known relation 
(LEVI-CIV~TA) : ~J~z?nd(r=~J(v.n)vdc. (9.3) 

Note that in (9.2) and (9.3) S(t) may move in an arbitrary manner as long as the 
region T(t) contains no singularities and only fluid. If the boundary is physical, 
the terms in square brackets vanish in (9.2) ; if the boundary is fixed, then 2jl= 0. 

Let S,,(t) be a physical boundary, possibly the surface of a solid body, and 
S(t) a closed surface containing it. Applying (9.2) to the region of fluid bounded 
jointly by S, and S, one finds 

F,=SS@ +euWo 

=4~~d@tn+ v.nv)do+JJe(~v2n-v.nv)do. i 
(9.4) 

,Here F0 is the hydrodynamic orce fon S, and does not include the hydrostatic force. 
If singularities are allowed in the region occupied by fluid, they may be 

enclosed in spheres of small radius and the formula (9.4) applied to the remain- 
ing fluid, with S modified to include the spherical surfaces. If the singularities 
are isolated sources of strengths mi at the points ai, then by shrinking the spheres 
about the singularities in a customary fashion [cf. MILNE-THOMSON (1956, pp.448 
to 450)], one obtains the following modification of (9.4) : 

Eb=-SSePtn+ 
so 

v.nu)do+~4~em,vi+~Se(~u2n-v.nv)dd, (9.5) 

where vi is the velocity at the point ai when the source at that point is removed. 
Other modifications may be derived for other types of singularities. 

If the velocity field is such that ~l+~ v+O as r=1/x2+y2+X2+co for some 
E >O, then the last integral in (9.4) or (9.5) will vanish as S is expanded to in- 
finity, provided the latter can be done without destroying the validity of the 
formula. In the case of a body moving in a fluid with a free surface, one cannot 
expand in all directions and must include the contribution of the last integral 
over the free surface. However, the formulas are still useful in computing the 
force on an obstacle resulting from waves. 

10. Expansion of solutions in powers of a parameter. In their exact form even 
the’simplest problems with surface waves are difficult to solve. If one neglects 
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viscosity and assumes irrotational motion, the problem is reduced to finding 
solutions of LAPLACE’S equation, which is at least linear in the unknown. How- 
ever, the problem is still difficult because of the nonlinear boundary condition 
at the free surface or interface. This lack of linearity deprives one, for example, 
of the mathematical tool of superposition of solutions; expansion in eigenfunctions 
or use of GREEN’S functions is not possible. 

In order to be able to treat special problems, the equations are approximated 
by ones which are more tractable. The two principal methods of approximation 
may each be treated as a perturbation procedure. As was mentioned in Sect. 7, 
this procedure is not concerned with the assumptions about the nature of the fluid, 
for example, whether or not viscosity is neglected, but rather with the nature of 
the motion’and its generation. An advantage in using the perturbation procedure 
is that the assumptions about the motion are displayed in such a way that it 
is clear how to obtain approximations of higher order. The method has been 
applied to water-wave problems by SEKERZH-ZENKOVICH (194.7, 1951, 1952), 
K. FRIEDRICHS (1948), KELLER (1948), F. JOHN (1949), LONGUET-HIGGINS 
(195jb), PETERS and STOKER (1957), and others. As used here the method is 
purely formal, the nature of the convergence of the perturbation Series, whether 
it be uniform, pointwise, asymptotic or what not, being left open. However, 
for each method of approximation it is possible to point to several cases in 
which convergence has been proved : for the infinitesimal-wave approximation, 
LEVI-CIVITA’S (1929, STRUIK’S (1926) and NEKRASOV’S (1921, 1928) proofs of ;the 
existence of a periodic wave of permanent type; and for the shallow-water 
approximation, FRIEDRICHS and HYERS’ (1954) proof of the existence of a solitary 
wave and LITTMAN’S (1957) proof of the existence of cnoidal waves. 

To a certain extent the two methods of approximation have different aims. 
The infinitesimal-wave approximation fits into a general scheme for approximat- 
ing nonlinear equations and boundary conditions by linear ones [see SOURIAU 
(1952) for a discussion]. To apply it, one must know a particular exact solution 
to start with. In addition, one must be able to select a dimensionless parameter 
(or parameters), say 8, which helps to determine the exact physical problem and 
is such that the solutions to the exact problems associated with each value of E 
approach (in some sense) the known exact solution when E -+O. It is then assumed 
that the various functions entering into the problem may be expanded into power 
series in E. The series are substituted into the equations and boundary conditions 
and grouped according to powers of F. The coefficients of each power then yield 
a sequence of equations and boundary conditions, the coefficients of E giving 
the first-order theory, those of .G the second-order theory, etc. As an exact initial 
solution it is usually most convenient to take either a state of rest or of uniform 
motion, Various choices of E will be made in the applications later. 

The shallow-water approximation differs in that a change of variable involving 
the expansion parameter is made initially. This introduces E into the exact 
equations. When the power series expansions are introduced into the equations, 
the resulting equations of the sequence are linear in quantities of the same order, 
but the equations are too degenerate to determine all these quantities without 
recourse to the equations of next higher order. This leads to nonlinear equa; 
tions for the desired functions, but ones of a type which have been intensively 
investigated. In this case the procedure is perhaps artificial in that the perturba- 
tion scheme is devised to lead to a special set of equations for a first-order theory, 
derived originally by quite different reasoning. However, in doing this it makes 
clear the nature of the approximation and gives a systematic procedure for find- 
ing higher-order approximations. It is instructive, in this connection, to read 

Ronald W. Yeung
"Surface Waves Online" - Copyright 2002, Regents of the University of California.  All Rights Reserved.



Sect. 10. Expansion of solutions in powers of a parameter. 463 

the usual derivation as given, for example, in LAMB (1932, pp. 254-256) or 
STOKER (195 7, pp. 22-25) (who also gives the one given here). 

a) The i~firtitesimal-wave afifiroximation. We shall derive the equations of 
motion and the free-surface or interface boundary conditions for this linearized 
theory without identifying explicitly the parameter E used in the expansions. 
Later on, when specific choices are made, the boundary conditions on certain 
geometric boundaries associated with the choice of F will be modified to conform 
with the linearization. 

Consider two incompressible viscous fluids in contact along an interface 
represented by y =y~ (x, z, t). Quantities referring to the upper fluid have sub- 
script 2, those to the lower fluid subscript 1; the coefficient of surface tension 
is T. Assume the following expansions in the parameter a: 

“i(X,y,z,t,&)=E~11)+&22)!2)+..., 
pi@, y, 5, t, &) = @’ + E fip + &2 pc,“) + . * * ) 

I 

(10.1) 

7 (x, 2, t, E) = & $1) + &2#2) + * * * . 

Substitute these expansions in Eqs. (Z&Z), (2.5), (?.I), (j.j), and (3.7), remember- 
ing in addition that formal expansions of the following sort, for example, hold: 

%(%“rl(VJ),~J) =Ul(%o,&t) +“17~ly(%o,&t) f*.* 
= & up’ (x, 0, 2, t) + &2 [ui”) (x, 0, 2, t) + $1) 24p$ (x, 0, 2, t)] + * * - . 

Collecting first the terms independent of E, one finds from (2.5) and (3.3) 

grad (p$‘)+ pig y) = 0, $i”) (x, 0, z, t) = #F)(x, 0, x, t). (10.2) 
Collecting the coefficients of the first power of E, one finds 
&,&cl) 
z 

ax + i = 1,2, 

a&, .j 
2 = - ei grad# + vidv(,!), at i = 1,2, 

up (x, 0, z, t) = 24’2” (x 0 z t) 
2.p (x, 0, 2, t) = vp (x,‘o,‘t,‘t) I= #’ (x, 2, t) ) ’ (1O.S) 
Wl’~’ (x, 0, 2, t) = z&’ (x; 0, z, t) ) 
p1(4$ (% 0, z, t) + VP:) = p2 (u& + v&) , 
h’) (x> O,z, t) - fii”’ - (~2 - ~1) g q(l) - 2 (p2 v&! - ,ul vi’$) = T(Y$; + $J, 
p&4$(% 0, 2, t) + Q) =p&&! + V~~'?,~ 

If the upper fluid is replaced by a given atmospheric pressure distribution 5 (x, x, t), 
then the equations for the lower fluid become (after dropping the subscripts) 

gradW”)+egy) =o, p(O) (x, 0, 2, t) = p (x, 2, t) ) 

I 
a w(1) __ = 
at -- d- grad p(r) + v d vrl), I (10.4) 

Y#’ (x, 2, t) = v(l)(x, 0 2, t) 
’ a!) (x, 0, 2, t) + vp = WY 0) ‘+ “p = 0 ) 

$“‘(X, 0, 2, t) - Qgp -2/A v @)= - T(Y$; +&!) +B”(x, z, t). , 
Y 
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For convenience we have assumed above that the expansion for 17 starts with 
~$1). If we had assumed instead ye =#O) +&r(l) + . . e, we would have found from 
(3.1) and (3.7) the equations 

?It 
(0) = $’ = 17io’= () 

and, hence, $0) =const. The zero values of y in the boundary conditions would 
then be replaced by this constant. Taking the constant equal to zero means that 
we have taken the undisturbed interface as (x, z)-plane. 

The equations above give the linearized equations of motion and boundary 
conditions at the interface or free surface. If one now proceeds, as we shall not 
do for this case, to collect coefficients of ~2, one may obtain the differential equa- 
tions and boundary conditions for the second-order corrections to be added to 
the solutions of .the linearized equations, and so forth for higher-order correc- 
tions. In general the resulting equations are too unwieldy to be useful. 

A special case of the linearized equations which is of particular interest is 
irrotational flow of a perfect fluid. There is then a velocity potential @ which we 
assume has the following expansion: 

CD (x, y, z, t, E) = & CD(l) + &2 G(2) + * ’ * . (10.5) 

Condition (2.11) becomes 
d Q(i) = 0 ) i=1,2,.... (10.6) 

Let there be two superposed fluids with velocity potentials @r and Qz describing 
the motion in each; otherwise the same notation as above. Then condition (3.1) 
at the interface gives the linearized condition 

d” (x, z, t) = Qy; (x, 0, 2, t) = ‘pf$! (x, 0, 2, t) (10.7) 

and condition (3.9), together with (2.10’), gives 

- @2 @kJ (% 0, z, t) + @l @I:! (% 0, 2, 4 + (@I - @z) g yl’l) (% z,t) = mt2 + d?‘,‘, * (10.8) 

The further special case when both the upper fluid and surface tension are 
missing will be dealt with so often later on that we repeat the boundary conditions 
for it. We allow, however, a pressure distribution on the free surface, 3 (x, z, .t) = 
Ep+E2p)+...* The first-order boundary conditions are 

$’ (x, z, t) - q (x, 0, 2, t) = 0) 
gp(x, 2, t) + cq(x, 0, 2, t) + @-lp(x, 2, t) =o. 1 

(10.9) 

Eliminating q(l) between the last two equations, one gets 

g q’ (x, 0, x, t) + c#’ (x, 0, ii, t) + @-l&l’ (x, 2, t) = 0 * (10.10) 

The boundary conditions for the second-order corrections are not too long to write 
down : 

$“‘(x .z t) - cy’(x, 0 2 t) = $1) @Cl; - $’ CC@’ - $1’ @Cl) 
a , 

g ~(2) ~x,‘z, t) +@j”) (x, d, i, t) +@-I 3(z) (x, z, t) =--q(l) @j”,’ - i (grad @(1))2. 1 
(10.11) 

Eliminating q(l) and q(z) from (lO.ll), one finds a counterpart to (10.10): 

g @$S) (x, o, z, t) + @$ + e-r Fj2) = - & (grad @(1))2 + 

+ (gp + Q-1 p) (@I’: + $ q;),) - e-1 (@‘p’ $(21’ + @l’ &l’) . 
(10.12) 
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Under certain circumstances the next-to-last term will vanish. The boundary 
conditions for higher-order corrections will not be worked out in detail. How- 
ever, they are of the form 

where Aj and Bi are functionals of the functions in brackets, in this case com- 
plicated polynomials of the functions and their derivatives evaluated at y =o. 

It is useful to have the form of the linearized boundary conditions when 
certain additional assumptions are made. 

First, let us suppose that the (3, jj, ?)-coordinate system is moving with velocity 
c (t) in the x-direction with respect to the fixed (x, y, z)-coordinate system. Then, 
from the equation following (2.15) with y=y, Z=Z 

cp,(x,y,z,t) =q-c6~, Qtt = q, - 2c St, + c2 &,- i $2, 

and the boundary conditions become 

g $1) (3, 2, t) + @ Q, 0, x, t) - c q’ (2, 0, z, t) + e-1 p (z, z, t) = 0 ) 
~~~)(~,O,~,t)-2c~~l,)+C2~~~-i.~~)+g~~)+,-1~~1)-,,-1~~)~o. i 

(10.14) 

If c is constant and the motion is steady in the moving coordinate system, 

@(x,y,z,t) =&-ct,y,z) =p’(%Y,@ 

and the linearized boundary conditions are 

gijl(Z, 5) - c &’ (X, 0, 2) + @-lp(z, X) = 0, 

g $’ (it, 0, 2) + c2 cp$ (Z, 0, 2) - c e-1 jy (2, 5) = 0. 1 
(10.15) 

If the motion is steady with respect to a moving coordinate system, one may 
impose a uniform flow in the opposite direction and then treat the problem as a 
steady one in an absolute coordinate system, but carrying out the perturbation 
about the uniform flow. We illustrate this for the case of two-dimensional irro- 
tational flow. Let 9 (x, y) and y (x, y) be the velocity potential and stream func- 
tion, respectively, and assume expansions of the form 

~(x,y)=-cc+&~(l)(X,y) +,2p+..., 

y(X,y)=-cy+&y~1)(X,y)+E2y(2)+..., 

1 

(10.16) 

v(x) = & Yp) (x) + 9 p.p + . . . . 

The differential equations A ye = 0, A y = 0, qn =yr, yr = - y, become 

A #i) = 0, A y(i) = 0, y$’ = yw 
Y’ 

(#I = - y$‘, 

The kinematic condition (3.1) is replaced by 

Y(%17(4) =o- 

(10.17) 

Substituting the expansions (10.16) in this equation and in (3.11’), one finds from 
the coefficients of E 

- c Yp(x) + y(l)@, 0) = 0 ) 
g “/1(l) (x) - c pip (x, 0) + e-1 p(x) = 0. 

(10.18) 
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Eliminating q(l) and using the third of Eqs. (10.17), one gets 

g?p(x, 0) - c2?#(x, 0) + c @-‘B”(X) = 0. 

Collecting the coefficients of ~2, one obtains after some manipulation 

g $!p (x, 0) - $7 yp = + y(l) [c” YfJ - gyp’] - 1- c [&’ 2 + $‘“] ) 
2 

c p (x) = $2) (x, 0) + 1 y(l) $1) . 
c Y ’ 

1 

here we have assumed for simplicity that $ = 0. 

,U) The shallow-water afifiroximation. This approximation has been 
used by hydraulic engineers in the study of open-channel flow and, in a 

Sect. 10. 

(10.19) 

(10.20) 

widely 
further 

simplification, is used for the theory of tides. In deriving the equations from 
the exact ones we shall follow the method of FRIEDRICHS (1948) and KELLER 
(1948). However, a somewhat different approach to this approximation due to 
URSELL (1953) is also instructive. Although it is possible to carry through the 
derivation while taking account of surface tension, this will not be done here. 
It will be assumed to start with that there are two perfect, incompressible fluids 
with an interface y =q(x, .z, t); the bottom fluid is bounded below by a rigid 
surface y =-h (x, x). Variables pertaining to the lower fluid have subscript 1, 
those pertaining to the upper fluid subscript 2. The motion will be assumed 
irrotational. 

Before making an expansion in powers of a parameter, it is essential to make 
a change of variable in which vertical and horizontal distances are stretched by 
different amounts. Let m be a scale for horizontal measurement and n one for 
vertical measurement. Define I = n2/m2. 
the equations 

Introduce new variables, X, j?, Z, f, by 

x=qE, y=y, Z=zl/E, Ltp, G=u, Ykq/E, E=w, $=p. (10.21) 

Eqs. (2.2), (2.6), (2.S), [?.I), (3.9), and (4.1) (with T=O) become: 

(10.22) 

where u, v, w, p, Q possess suppressed subscripts 1 and 2 for the lower and upper 
fluids respectively, except in, the last equation. 
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Now assume expansions of the form 

7 = p) + 8 p + &2 $2) + . . . ) I 
(10.3) 

substitute in the Eqs. (10.22) and collect according to powers of E. (We shall 
henceforth suppress the bars on E, 7, t, 3, ?j). The terms independent of E give 
the equations 

7J(O) = 0) 
Y 

v(O) $p = 0 f)(O) q = 0) -JO) i$’ zzz 0) 

$1 = fJ(O) z P u.(O) = w(O) . z x , vp = gp, (10.24) 

dO)(x, tp), 2, t) = 0, up’ (x, - h,z, ?!)=O, 

@Lo) (x, Yp’, 2, 1) = pi”’ (x, Tp, z, t) . 

The first and fourth equations give 

-o(O) (x, y, 2, t) = 0. 
The third then states that 

(10.25) 

f,q’=wpo or 24(O) = 2,&O) (x, x, t) , w(O) = w(O) (x, 2, 1) . (10.26) 

The terms which are. coefficients of E give, after making use of (10.25) and 
(10.26), 

24p + WF’ + vy = 0, 

g -t#/@ = 0, 
wp + q,&O) wf' + w(O) wgN + $$ye = 0 

I 
I (10.27) 

*u(o)"/I~p) + woNyp + ~~0' - v(l) = () for y = v+O)(X, z, t) , 
tip hz + wp hy + zp = 0 for y=--(x,x). I 

(The equations deriving from irrotationality and the continuity of pressure will 
be brought in later.) The first and last two equations of (10.27) together with 
(10.26) give 

vp = - y (UC + w&) - (u$O’ k),- (WiO) h) 
0) = - y(u~"J + WE) + (24p $qx + (wp;$ - (u~"' p')z - (w'I")Yp))a + u2 

- (up hJz - (WlO) k) Z. I 

(10.28) 

The third equation of (10.27) gives 

$O’=-egy +f(%%t). 

In order to evaluate f, further information is necessary. Here are two cases of 
interest. 1. If the upper fluid is absent, the condition p(O) (x, q(O), z, t) =0 gives 

j)(O) = - @ g y + @ g q(O) (% 2, 4 * (10.29) 

2. If the upper fluid is unbounded above, then, up to an additive constant, 

~l"'=-elsY+(el-e2)s17'0'+~~ 

fiC'= -@2gY -tk. i 
(10.30) 

30* 
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If the upper fluid is bounded above by a free surface y ==d(x, z, t) =d@) + 
,cd(l)+..., then one may satisfy the boundary conditions #)(x, d(O), z, t) = 
0, fii”) (x, $O), z, t) =#p (x, q(O), z, t) with 

$I”’ = - @I g (Y - f+O’) + @2 g (d(O) - q(O)) > 
$p = - &J2g(y - d(O)). I 

(10.31) 

It is clear from the form of @co) why the shallow-water approximation is sometimes 
called the hydrostatic approximation. 

The usual equations for the first approximation to the shallow-water theory 
are those in which only the lower fluid is present. They may now be obtained 
by substituting (10.29) in the second and fourth equations in (10.27) and (10.28) 
in the fifth equation. They are (10.25), (lO.29), and 

“p) + f,p) $Q) + ,0(O) @I + g qf’ = 0) 
gp + u(O) le)p + ,(f)(O) &O) + g jp = 0 

rp + [%4(O) (rp + h)]$ + [w(O) b(O) + h;;, = 0: I 
(IO.59 

If one now collects the coefficients of .9 and the remaining coefficients of E, 
one finds after some reduction 

z&J’ + wp + 7y = 0, 

$Q) + q,&l) +&$ + &) f,&v + w(l) f,p + Q)!O) @ + yJ(l) *y + f$‘/Q = 0) 

“p + $p) $’ + ,&y(O) 7,p + @) $’ + @y/Q = 0) 

@p + $$(I) up + g,&(O) z&y;’ + & y$’ + 7&m y$’ + f)(l) $’ + fip/e = 0: 

wIp’ = $) g,&l) = ,&$‘, 8) a q$’ rz up, (10.33) 
$p) $‘+ $&l) q(z”’ + ze)(O) #’ + &) $) + #’ - $1) $1 - $1 = () 

for y = $O! (x, z, t) , 
~~~)h~+w~*)h,+v~~)=O for y=--.i%(x,z), 

+p) - fill) + q(l) (&OJ - #J@ = 0 for y = 2+O) (x, 2, t) . 

Some relations can be derived immediately from these equations. For the 
sake of brevity we introduce the following functions: 

A, (x, z, t) = WpJ + w,“a’ ) ci (x, 2, t) = (uj”) ?+o’)z + (zeJ~“) r/‘O)) 2) i = 1,2, 

B,(x, z, t) = -(~~~‘t%t)~ - (w$“‘h),, B, = C,- C, + B,. 

Eqs. (10.28) may then be written 

v!l) = - y Ai + B. * 21 i = 1,2. (10.28’) 

Then the fifth, first, and third equations of (lO.jj) give 
q,$‘l) = --HY ’ 24+yBx+Y(X,z,t), 

w(~)=--Q~A,+~B~+s(x,z,~), 
I 

r, = sz , 
d2)= +y”(4,+4,) -+Y”(&.+%) - Y(~,+s,) +1(x, 2, $1, I 

(10.34) 

fJl’/@ = * y2 [A2 + 24(O) A, + w(O) A, + A,] + 
+Y[AB+~~~)B,+~~~)B,+B,]+~(~,~,~), I 

See separate file errata.pdf
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where we have suppressed the subscripts indicating the fluid. The rest of the 
equations and the boundary conditions are still available to determine the un- 
known functions. We carry this out only for the case the upper fluid is missing. 
Then the last condition in (10.32) becomes fi(l)(x, q(O), Z, t) =eg@), which allows 
one to determine q(x, Z, t) after yl(l) is found. The next-to-the-last condition in 
(10.32) determines I(x, Z, t). The equations for Y, s and r(l) are 

u(O) r, + w(O) r, + r, + 241x0’ r + zt~“’ s = - 4 - BB,, 
,u(~)s,+~(~)s,+s~+~~)~+~~~)~=-~~- BB,, 
z,(o)r(zl) + 7jy(o)?1p + $' + A p = [v(z) - f,&l)y/(zo) - &)"ilp)]y=v(o), 

(10.35) 

where r, = sx , 
I 

q (x, 2, t) = g Y/(l) - +Yp [A2 + z&O) A, + w(O) A, + A,] - 
- q(O) [A B + do) B, + do) B, + B,] , 

Z(x, 2, t) =-[u’l’JZ,f z4dl)/%x]y=-h- +rp [A,, + A,,] $ 

+ +r1'Oj2 [B,, + %,I - q'"'Cvx + ~1. 
The solutions to these equations give the second-order corrections to the first- 
order shallow-water theory. 

The equations resulting from the coefficients of &3 have been given by KELLER 
(1948) for two dimensions, but will not be reproduced here. 

The Eqs. (10.3,2) for the first-order theory are nonlinear. In the theory of 
tides and seiches it is customary to simplify further by linearizing them in a 
manner similar’to that used in deriving the equations for the infinitesimal-wave 
theory. Let y =0 be the surface of the undisturbed water and assume that one 
may make further expansions in a small parameter t(: u(O) = ccz&O1) + es ., ZU(O) = 
~~(01) + . . .) qJ) = aypl), . . . . After some easy manipulations one finds for the 
linearized approximation to (10.32) the equations 

$1) + gyp = 0, z@p 1) + g qp 1) = 0 ) 

(01) - g [r/~“h]x - g [Y/F”k], = 0. 
(10.36) 

f?tt 
If the bottom is flat, the equation for 11 (01) becomes the simple wave equation. 

D. Theory of infinitesimal waves. 
This chapter will deal with special solutions of the linearized equations derived 

in Sect. IOR. This approximate theory has been very fruitful in its application 
to problems with various boundary configurations; the linear character of both 
the equations and boundary conditions allows one to use easily found simple 
solutions to construct other solutions satisfying special boundary conditions. The 
derivation of the equations in Sect. IOa suggests the limitations of their use 
in physical problems: If L and V are a typical length and velocity associated 
with the physical problem, then, when the perturbation parameter E is small, 
the surface elevation and velocities (or their deviation from a uniform flow) 
should be small w&h respect to L and V respectively. The smallness may not 
be uniform, but the quantities in question should approach zero point-wise with F 
except at singular points. 

11. The furrdamental equations. With few exceptions, this chapter will be 
concerned with the solution of a problem in potential theory. Let the (x, x)-plane 
be at the undisturbed free surface. We shall be seeking a function @(x, y, x, t), 

See separate file errata.pdf
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the velocity potential of the motion, satisfying the conditions [cf. Eq. (lO.lO)] 

A@ = CD,, + dj,, + cp,, = o 

@ts,t (% 0, 2, t) + g q (x, 0, z,t) = - e-l& (% 2, t), (11.1) 

CDs = v, on solid boundaries, I 

where A @ = 0 is to be satisfied at all nonsingular points of the fluid in the region 
y < 0 and V, is the normal velocity of the solid boundary at a given point. 2; (x, z, t) 
is a given pressure distribution on the free surface; in many problems it will 
be 0. The form of the free surface is given by: 

(11.2) 

Two special cases occur frequently. If the motion is steady in a coordinate 
system moving with constant velocity c in the x-direction, then with x, y, z as 
moving coordinates, the free-surface boundary condition and equation of the 
surface are given by [cf. Eq. (10.15)] 

If @ and 5 are harmonic functions of the time, i.e. 

@(x, y, Z, t) = vl (x, y, z) cos u t + q2 (x, y, z) sin o t= Re v (x, y, x) emiut, 
where 

~(X,Y~~)=~l(X,Y,z)+ipl,(x,Y,x) 

and similarly for 5, then the free-surface condition and equation of the surface 
become 

In the few cases where we consider superposed fluids, viscous fluids or surface 
tension, we shall refer back to Sect. 10 for the equations. 

Use of complex variables. For two-dimensional irrotational motion, it 
is frequently advantageous to use complex variables. Let 

z=x+iy, f(.54=@(%Y,4 +i~(x,y,t), 

where @ and !P are velocity potential and stream function, respectively. (It 
should be clear from context whether z is being used for x +i y or one of the 
horizontal coordinates.) Since the equations relating @ and Y, 

@I! = Yy, q,= - Qy, 

are just the Cauchy-Riemann equations, the function f (z, t) is an analytic func- 
tion of z for all points z for which @, and 6jy exist. f (z, t) will be called the “com- 
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plex potential”. The “complex velocity” is given by 

zeJ(z,t) =f’(z,t) =u--iv. 

The boundary condition at the free surface in (11.1) can be expressed in the 
following equation in f(z, t) : 

Re{igf~(z,t)+~f(z,t)}=--~p,(x,t) for y=o. 

The first equation of (11.3) becomes 

Re {igf’(z) + Sf”(z)} = i@‘(x) for y = 0. 

However, Eq. (10.19) shows that this may also be taken in the form 

Re{igf(z) +c2fl(.z)} =tp(x) for y =O. 

(11.5) 

If one may express f (z, t) =fr ( z cos ot + f2 (z) sin o t, then the first of Eqs. (11.4) ) 
becomes 

Re{igf~(z)-~2fh(z)}=(-l)k~fik-~-,p(x) for y=O, K=1,2. (11.7) 

We note that in order to express f (z, t) in a manner analogous to that used 
for @ immediately preceding (11.4) one must introduce a second complex unit j 
which does not “interact” with i. Thus let f(z) -fi(z) +j f2(z). Then f(z, t) = 
Rei f (z) e-jot. 

If f(z) is an analytic function satisfying any one of the conditions (11.5) to 
(11.7) with fl = 0, then f(“)(z) will also satisfy it. 

12. Other boundary conditions. The boundary conditions given in Sect. 11 
will not ordinarily be sufficient to ensure a unique solution to the problems in 
which the fluid occupies an unbounded region. An additional condition at 
infinity must be imposed upon the potential function. In certain cases the proper 
additional condition is fairly clear from the physical problem. For example, for 
a body moving steadily in an infinite ocean undisturbed except for the body, 
it seems reasonable to impose the condition that the fluid motion vanish far 
ahead of and far below the body. For the fluid motion produced by a stationary 
but steadily oscillating body, it seems reasonable to impose vanishing of the 
motion far below the body, but outgoing waves at infinity on all sides, if the body 
does not extend to infinity in some horizontal direction, the so-called “radiation 
condition”. 

If the body is not bounded in a horizontal direction, one may easily see that 
the radiation condition stated above cannot be expected to be satisfied. For 
example, suppose that waves are being generated by some type of oscillation of 
a vertical half-plane, say z =O, x >O, in which the oscillatory motion of the half- 
plane is independent of x. Then one will expect the generated waves to behave 
like outgoing plane waves from the two sides of the plane as x--f co; these will 
not satisfy the radiation condition in the direction Ox. On the other hand, one 
might expect that the influence of the edge at x =0 would show up as waves 
satisfying the radiation condition. The formulation of proper boundary condi- 
tions in situations of this sort has been discussed by PETERS and STOKER (1954) ; 
see also STOKER (1956, 1957, p. 1Ogff). 

In diffraction problems one customarily prescribes the form of an incoming 
wave and then seeks the scattered wave, The preceding remarks concerning the 
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boundary conditions for waves generated by an oscillating body apply also to 
the scattered wave. 

In more complicated physical situations it is not always clear what boundary 
conditions should be imposed at infinity, and errors have been made. For example,, 
for a body which is both oscillating with a fixed frequency c and moving with 
a steady average velocity c, one might reasonably expect no motion far ahead if 
c is large, but a radiation condition if c is small. However, the formulation of 
the boundary condition cannot be completed until the problem is partly solved. 

The proper formulation of the boundary conditions at infinity can frequently 
be obtained by a method recommended by HAVELOCK (1917, 1949a) and used 
also by BRARD (1948a, b), STOKER (1953, 1954), STOKER and PETERS (1957), 
DE PRIMA and WV (1957), WV (1957) and others. It consists in formulating an 
initial-value problem for which the desired steady-state problem is the limit as 
t+ co. For the initial-value problem the boundary condition at infinity is that 
the fluid motion vanishes everywhere. However, even though this procedure 
may produce the desired solution, it is not always obvious what boundary con- 
ditions at infinity in the steady-state problem would have produced it. 

13. Some mathematical solutions. Some of the mathematical solutions to be 
derived in this section will provide solutions, without further modification, to 
certain physical problems; others, although apparently not acceptable physically, 
will provide fundamental solutions which can be used in constructing solutions 
to other more complicated physical problems. In all cases the fluid is assumed 
unbounded in a horizontal direction and either infinitely deep or with a horizontal 
bottom y = --h; the pressure on the free surface is taken to be zero everywhere. 
The solutions without singularities are obtained by the method of separation of 
variables, and are all harmonic in t. It will not be necessary to carry along the 
subscripts of (11.4). 

u) Sefiaration of the y-variable. Assume that one may express v by 

a, (x, Y> 4 = Y(Y) pl(% 4 ’ 

Then d,~ = vZ+ + plyv + vea = o becomes, after separation, 

A?pl$Ap,=O, Y”--AY=o. 

The two cases A = VG > o and A = - m2 < 0 lead to different solutions. 
A > O. In this case CJJ (x, Z) satisfies the wave equation 

Ll,p,+m2g,=o 
and Y is given by 

Y =ae*y+ beemy. 

If the fluid is infinitely deep and vy (x, y, Z) is to remain bounded as y-f - 00, 
one must have b =O. Then condition (11.4) requires 

and 91(x, y, Z) is of the form 
y (x, y, 2) = eosY/g p (x, z) . (13.1) 

If the fluid is of finite depth Jz, the boundary condition py (x, - h, x) = 0 requires 
Y to take the form 

Y =acoshm(y +k) 
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and condition (11.4) becomes 
mtanhmh=$, 

an equation with two real solutions, say fm,. In this case, one has 

pl(x,y,4 =coshm,(y+4v(x,d. (13.4 

We note that, if h,<h, then a2/g<m~)<m~‘). Also rn,/hb+ojgb as h-to and 
m,--w2/g as h+ co. 

A < 0. In this case pl (x, z) satisfies 

A,g,-m2p,=O 
and Y is given by 

Y =acosm y + bsinmy. 

Condition (11.4) restricts Y further to 

Y =C 
( 
mcosmy+$sinmy). 

If the fluid is infinitely deep, requiring q+ to remain bounded imposes no further 
restriction. If the fluid is of depth k, then yy (x, - k, z) = 0 requires m to satisfy 
the equation 

mtanmh= --t, 

an equation with an infinite number of real solutions, & ml, f m2, . . . . In this 
latter case one may conveniently take Y in the form 

Y =Ccosm(y +h). 

The roots mk satisfy i (2 k - I) z/h< mk < k z/h. For fixed h, mh h + kn as k + 00 ; 
for fixed k, mkh-+kz as h--+0, and m,h+i(2k-1) z as h+co. 

For these two cases one finds then for p?(x, y, z) the forms: 

infinite depth : 

p,(x,y,x) =C 
( 
mcosmy+$sinmy)v(x,z); (J3.3) 

finite depth : 
y (x, y, 2) = C c0s.e (Y + h) y (x, 4 . (13.4) 

/3) Further sefiaration of variables. We now assume Q, (x, z) =X(x) Z(z) and 
substitute in each of the two equations for v given above. 

A >O. In this case substitution in A v +rnsp =0 gives 

X”+(m2-ks)X=O, Z”+k22=0. 

(The equations obtained by replacing k2 by - k2 will give the solution obtained 
below for A < 0, with x and z interchanged.) The solution for Z is 

Z=fcoskx+gsinkx=Bcos(kz+y). 

The solution for X depends upon the sign of m2 - k2: 

k2 -c m2 : X=ccosx~m2-k2+dsinx~ms-k2; 
k2 =m2: X=cx+d; 
k2 >m2: X=~exlik~~~~+de-~li~~~. 
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A < 0. Substitution in A,g, - m2p = 0 gives 

X”-(k2+m2)X=0, Z”+k2Z=o, 

which gives Z as above and 
X = c exVka+,n + d e-x)‘k’+m’. 

(Substituting - k2 for k2 would give the solutions corresponding to A >O with 
x and z interchanged.) We may accumulate the preceding results to obtain the 
following fundamental solutions : 

for infinite depth: 

e”y(acosxlly2--kZ+bsinx]ly2-k2)cos(kz+Y)cos(ot+r), k2<v2, 
e”y(ax+b)cos(kz+y)cos(at+t), k2 = v2, 
e"Y(a ezlih --Y 3-t + b e-xV~*~) cos (k z + y) cos (o t + z) , k2 > v2, 

(m cos m y + v sin m y) (a exVk’fm’+ b e--xv-) cos (k z + y) cos (o t + t) , I 

(13.5) 

where v = as/g ; 

for finite depth: 

coshm,(y+h) (acosxlm$k2+bsinx]lm,2-k2)x 
xcos(kz+y)cos(ot+z), k2<mi, 

coshm,(y+h)(ax+b)cos(kz+y)cos(ot+z), k2 = mi, ’ (434 
coshm,(y+h) (ae~V~‘--11~~+be--xVks-,:) cos (kzfy) cos(at+z), kz>rni, 

cosmi(y+h)(ae”V~+be-xv~)cos(kz+y)cos(ot+z), 

where 
m,tanhm,h-G=O and m,tanmjh+$=O. 

The corresponding solutions for two dimensions may be obtained by setting 
k = o and deleting the second and third equations in each group. 

For either set of solutions only the first in each is bounded for all values of 
the variables for which yg 0 or - hs ~50. For two-dimensional motion it has 
been shown by WEINSTEIN (1927, 1949) that the only function harmonic in 
-h< y-co and satisfying (11.4) and pl,( x, -h) =O for which both v and vy 
are bounded in - h5 y 5 o is q~ = A cash m (y + h) sin (mx +a). KELDYSH (193 5) 
and STOKER (1947, pp. 7-9) have proved a similar theorem for the lower half- 
plane : If CJY and p: + p?t are bounded for ys 0 as x2 + y2 -+ co, the only q~ satisfy- 
ing (11.4) and harmonic everywhere in the half-plane ys 0 is A eky sin (k x + LX). 
WEINSTEIN’S theorem has been generalized by JOHN (1950, p. 59) to three dimen- 
sions : If q~ (x, y, z) satisfies (11.4), ply (x, - h, z) = 0, 

lim v (R cos u, y, R sin a) R-b epmlR = 0 
R-+CQ 

and is harmonic everywhere in - hs ~50, then q~(x, y, z) is of the form (13.2) 
with v (x, z) an everywhere regular solutron of 

A,9 +rnEv =o. 

The condition at infinity is necessary, as the solution derived below in (13.8), 

y =I,,(mIR)cosmI(y +h), 
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shows. The corresponding theorem for infinite depth was proved by KOCHIN 

(1940). 
The equations for ~1 (x, y) may also be separated in polar coordinates (R, R), 

x = R cos a, z = R sin a. We give only the solutions : 

infinite depth: 
e”y [A J, (v R) + B Y, (v R)] cos (B a + d) cos (o t + z) , 

(mcosmy+Ysinmy) [AI,(mR)+BK,(mR)]cos(r,cr+d)cos(ot+z), (lTS7) 

where v =02/g and n is an integer; 

finite depth : 

coshm,(y+h) [A.L(m,,R) +BY,(m,R)lcos(na+6)cos(at+z), 
cosm,~(y+h)[AI,(miR)+BK,(mjR)]cos(~a+6)cos(ot+z), izl, 

where m, tanh m, h - a2/g = 0, mi tan mi h +02/g = 0 and n is an integer. Here 
J,, Y,, I,, K, are Bessel functions (we use WATSON’S notation). Y, and K, are 
both singular at R = 0 but approach zero as R-+ 00 ; J, and I, are both finite 
at R = 0; J, approaches zero as R -+ 00, I, increases exponentially. 

y) Singular solutions. In this section we shall find solutions of the problems 
set in Sect. 11 which have singularities of simple type at a single point. We 
shall indicate proofs only for the case of simple sources, i.e. singularities of the 
for [(~-t1)2+(y-~)2+(~-c) ]- 2 t or log [(x - a)” + (Z - b)2]&. We shall consider 
first the case of a stationary source of pulsating strength, then the case of a mov- 
ing source. Three-dimensional problems are treated first. 

Source of pulsating strength in three dimensions. Let (a, b, c) be 
in the lower half-space. We wish to find a function 

~(X,y,~,t)=~,(x,y,z)cosot+~,(x,y,z)sinat 

defined for y50 except at (a, b, c) and satisfying 

1. dpl,=O except at (a,b,c), i=1,2, 

2. ~jy(x,o,z)-v(pi(x,o,2)=o,i=1,2,v=$, 

3. @(x, y,z, t) =r-lcosot + @0(x, y,z, t), 
where @,, is harmonic in the whole region y < 0, ’ (13.9) 

Here 92 = (x - a)2 + (y - b)2 + (2 -c)” and R2 = (x - a)2 + (Z-C)“. Condition 5, 
usually called the “radiation condition”, requires the waves at infinity to ben 
progressing outwards and imposes a uniqueness which would not otherwise be 
present. However, other such conditions could be imposed. 

We assume that a solution @ can be found in the form 

@ (x, y, z, t) = [y-l + y. (x, y, 41 ~0s G t + p2 (x, Y, 4 sin 0 t . (13.10) 
p12 will be determined at the end so as to satisfy 5. Denote the double Fourier 
transform in x and x of v by @: 

p (x, y, z) = -iGs”s;; (k, 6, y) eik (xcosO+zsin*) d6 d k. 

See separate file errata.pdf
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Then condition 1 applied to vO becomes after transforming 

FOYY - k2i&,=o 
or 

5. = A, (k, 6) eyk (13.11) 

where we have used 4. to discard the other solution. From the known integral 

(x2 + y2 +22)-a = izrJ’e-kIYI eW~cos~+zsin@) d@ dk 

0 -?I 
one may compute 

y?l = e-k[y-bl e--ik(acosB-tcsinB) 

Substituting F. +Y? in the transform of condition 2 gives 

(13.13) 

k fv kb --ik(acos8+csin8) A,@,@ = Fe e (13.14) 

We now have, formally, 

%I(% y> 4 = 2’, f& ek(y+b) eik[(x--a)cosB+(z--c)sing] d8 ,jk. 

6 --n 

Since the integrand has a singularity at k =v, the integral is not meaningful 
without further definition. We shall interpret the integral as a Cauchy principal 
value. Then 

pll (x, y, 2) = + + -2:, PV Jf; ek(y+b) 

\ 
eik[(x--a)cos~+(a-c)sin8] d@ dk, 

0 --n 

-,i~:,+xpvjQ~,~v 

’ (13.15 
~ ek(y+b) eW(x--a) cosB+(z -c)sin8] d@ dk, 

0 --n 
where r~=(~--u)2+(y+b)2+(~-~)2. Th e second equation may be derived 
easily from the first one by use of (13.12) suitably modified. p1 satisfies I., 2. 
and 4. ; v. is harmonic in the whole region. 

In order to satisfy 5. we shall first find the asymptotic form of p1 for large R. 
With polar coordinates 

x-a=Rcosu, z-c=Rsina, 

one may write (13.15) as 

= i i- t + $ PV/J’& ek(y+b)cos (k R cos 6) d&h d k, 
0 0 

cm1 

=t+~+~PVSS-~~~~-~ek(Y+l) cos R kildildk, 
0 0 

) +~+zvPV~‘&ek(Y+“)J,(kR)dk. 3- 

0 
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