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where the last equation follows from (17.42) and where 
q-1 

P(A) = z ak ii”. 
k=O 

(17.50) 

From the assumptioqs originally made concerning f(z) and from the method 
of selecting the {a,+} it follows that g(z) is regular everywhere in the wedge 

- 2ys;650 
except possibly at the origin, that 

Im(g(z)}=~ for, Z=X>O and z=yeWziY, 

and finally, from the last of Eqs. (17.24), that 

g(B4 =-s(z). 

Since f(z) is assumed bounded as X-G+ co, this is true also of g(z). These various 
conditions imply that g(z) must have the form 

b, real. 

We have thus shown that f (2) satisfies the differential equation 

p(&)($ +ivjfM =$o,&2 bti real* (17.52) 

From the definition of P(il) it follows that 

P(A) (A + iv) = P(/31) (- /3 3, + iv). 

Since the coefficients in P(2) are real, 1 is a root or P(a) = 0 if il is a root. Further- 
more, from the identity above also /3L is a root providing ,t?l.+iv. Since n = -iv 
is an obvious root of the left hand member, - i@v is also a root and hence - i/P%, 
-i/e%,.... Since /?q= - 1, no new roots are added by going further than - i,W*v, 
and since iBvkv = - i/Pkv, a complete set of roots of P(il) (3, +iv) is 

-iv, -iav, - ia2v, . . . . -i/W%. 

Thus the solution of the homogeneous equation can be expressed in the form 
q-1 
2 Ak exp (-ivpkz) . 

k=O 
(17.53) 

This is, of course, exactly the form of KIRCHHOFF’S solution of (17.36). Since we 
have already determined the necessary form of the A, in order to satisfy the 
boundary condition on the bottom, we need not pursue further the solution of 
the homogeneous equation. 

The solution of the nonhomogeneous equation is straightforward. However, 
just as for the homogeneous equation, one must take care to satisfy the boundary 
condition on the bottom, i.e. Im{emiY f’(r e-;y)} =O. The detailed considerations 
may be found in the several cited papers; BRILLOU~~T (1957) treats the matter 
thoroughly. If one considers (17.52) with the right-hand side replaced by only 
one of its summands, say b,z- t2%+‘)q, then the complete solution can be put in 
the following form, as shown by BRILLOU~~T: 

q-1 
f(z) = zA!,exp(- ivBkz) ~~+~(--l)“q+q-~$ -@?- 

k=O J 1 pn+uq 3 (17.54) 
J-k 
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542 JOHNV.WEHAUSEN and EDMUNDV.LAITONE: Surface Waves. Sect. 18. 

where c, is an arbitrary real constant, B, of (17.37) has been set equal to I, and 
where r, indicates that the integral is to be carried out over each of the paths Pk+, 
and r< shown in Fig. 16. However, one may obtain a variety of other forms for 
the solution. 

An asymptotic expression as x--f CO and for y = 0 is given by 

(- 1)‘24fv--1~ 
f(x)+%+% (2nq+q-m- 1 ( exp - ivx - in=1 

4 ) 
or (17155) 

fp(X,O)~C~COS 
( 
vx+d+ fb, 

1 
(- 1p+q--ln 

--sin 
@nq+9-41)!fi i 

vx +&-$). 
I 

In the neighborhood of z =O, f(x) behaves like log z for YZ =0 and like ,zB2*‘J for 
rn>o. 

It is not clear physically what type of singularity at z = 0 most nearly describes 
the behavior of real waves. However, most writers have restricted their treatment 

to the weakest possible singularity, i.e., the 
logarithmic one * 

From the asymptotic expansion as x--f m 
one sees that it is now possible to construct 

iv&? an incoming progressive wave by proper 
choice of the constants c, and b,. Thus, if 

Fig. 16. we select 

c,=acos(ot+z), b, = _ (- 1)“q+q-l n- 1(2fiq+q-1)!l/qasin(at+z), 

then the resulting solution will behave like 

as x--f CO for y =O. In connection with (17.55) and the selection of b, just made 
it is apparent that the formulas (17.54) and (17.55) will be more directly con- 
nected with parameters with a simple physical interpretation if we replace b, by 

d = b (- l)nq+q--ln 
% 

* (2~4+4--1)~ * 
For PZ = 0 companion singular solutions to the regular solutions (17.40) and 

(17.41) are not difficult to write out : 

y=90”(4=1, *=o): 
00 

V(% Y) =a0 
d 

eYYsin vx - 0 
J’ 

e-“X 
n (17.~56) 

v((x,y) =$e*y[(~+Si(v~))sin(v~+~)+ 

+Ci(vX)cos(vX+~)++V?e--vrEi(vX)]. 
1 

(17.57) 

Further formulas for y =30” and y =6” may be found in BRILLOU~T (19;57, 
p. 93 ff.). 

18. Three-dimensional piogressive and standing waves in unbounded regions 
with fixed boundaries. The general remarks at the beginning of Sect. 17 apply 
here also. Although most of the solvable problems in the present category are 
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Sect. 18. Three-dimensional progressive and standing waves in unbounded regions. 543 

such that they can be reduced to two-dimensional ones (however, see the end of 
Sect. 19/3), the methods of complex-function theory are na longer applicable to 
the same extent. The division of topics is the same as in the last section, namely, 
diffraction of waves by obstacles and waves on beaches. 

c() Diffraction of water waves. In a horizontally unbounded ocean of uniform 
depth F, assume that an incoming wave is specified by 

@,(x,y,z,t) =$coshm(y+h)cos(mx+ot+rx) (18.1) 

and that it is scattered by one or more obstacles in the water. We wish to find 
the velocity potential for the motion of the water in the form 

@(X,Y,G4 =@r-k@s, (18.2) 

where Qs is the scattered wave and satisfies the radiation condition if the body is 
of bounded extent. 

As usual, we may write Q, in the form 

@(x, y, z, t) = Re pl (x, y, .z) eMiut, P =Plfi%v (18.3) 

where pl must be a potential function satisfying 

~y(%O,4 --yp)(%O,X) =o, v = o”/g, 

yfl = P)~,, + q~s* = 0 on the obstacles, I (18.4) 

General obstructions. Consider a single submerged obstacle bounded by 
the surface S. We shall try to express the scattered wave $= Re vs e-;Ot by 
a distribution of sources over S. However, in order to satisfy the various boundary 
conditions, we take sources in the complex form (i~.lS) or, in the case of infinite 
depth, in the form (13.17”): 

where we have written G = Gr + i G, for the complex form of (13.18). The boundary 
condition on the body now becomes 

o+L+ 2 = 3 - + y (x, y, 2) + 

(18.6) 

Since aq+,,/an is a known function, this is a Fredholm integral equation of the 
second kind for y (x, y, z). (We note in passing that if the motion of the surface S 
had been prescribed to be Q$3n, then the same integral equation for y would 
have been obtained.) 

This equation has been considered by KOCHIN (1940) in the case of infinite 
depth, and he proves that a solution exists if v =a2/g is large enough and the 
body is submerged. Iterative procedures for computing y follow from the theory. 
HASKIND (1946) has extended the argument to finite depth. 
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544 JOHN V.WEHAUSEN and EDMUNDV.LAITONE: Surface Waves. Sect. 18. 

JOHN (4950) has treated both the uniqueness and existence problem in great 
detail and has shown that a unique solution exists for a body whose surface 
intersects the free surface perpendicularly and which can be represented as a 
single-valued function over the area enclosed in the intersection. His result 
holds for all values of m (or Y if the depth is infinite). He also reduces the existence 
problem to solution of an integral equation. 

Vertical cylinders. When the obstacle or obstacles are vertical cylinders 
extending from above the free surface to the bottom, it is possible to reduce 
the problem to one in diffraction of sound waves for which many special solutions 
are known [see, e.g., HAVELOCK (1940)]. In this case we may separate the y 
variable in the manner shown in Sect. Iga: 

where 

and 

v (% Y> 4 = VJ (% -4 Y(Y) 
Y(Y) = cash m (Y + 4 v (x> 4 I 

%z+plaz+~29)=o. 

(18.7) 

(i8.8) 

Here m must be the same as in (18.1) since the frequency is fixed by the incoming 
wave. ~((x, z) must now satisfy (18.8) and the second two conditions of (18.4). 
This is exactly the same mathematical problem encountered in the diffraction 
of sound waves by a cylindrical body (in that case the air pressure replaces q). 
Thus, any solutions known for sound diffraction by cylinders may be taken over 
immediately for water-wave diffraction. For example, if the obstacle is a vertical 
circular post of radius a, the velocity potential of the scattered wave is given by1 

ps (R 6, Y) = + cash m(y+lz) ,Z(- i)” E, e-irnsiny,cos6H~1)(mR), (18.9) 

where 
tarry, = J,’ (ma)/Y,I(ma) 

and 
EC)= 1, E,= 2 for 1z 2 1. 

Various approximations for large and small values of nza are known. The maxi- 

mum wave amplitude at any point is given by $191. 
The diffraction of water waves by a vertical half-plane may also be treated 

by transferring known solutions due to SOMMERFELD for sound and electromagnetic 
waves to the present context. This has been done by HASKIND (1948) for normal 
incidence and by PENNEY and PRICE (1952a) for both normal and oblique inci- 
dence. PETERS and STOKER (1954) [see also STOKER (1956) and (1957, pp. 109 to 
133)] have also solved this problem by a new and rather easy method, following 
an investigation of boundary conditions which will ensure uniqueness. The solu- 
tion has an obvious application in predicting the effect of breakwaters. Let the 
breakwater be the half-plane z =o, x> o and the incoming wave be given by 

~=Acos(mxcosa+m.zsina+ot), 

=Acos(mRcos(6-cc) +aq, 

where a is the angle between - OX and the direction of propagation, measured 
clockwise. Then the solution given by PETERS and STOKER is 

p1(&@, Y,=$ cash m(y+h) J,,(R) + 2~e~~~~*~,ls(~) cos ycos$-1. 
[ 

(~s.Io) 
1 

1 See P.M. MORSE: Vibration and sound, 2nd ed., pp. 347ff., 449. New York 1948. 
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Sect. 18. Three-dimensional progressive and standing waves in unbounded regions. 545 

The result can also be expressed by means of integrals. In the case of normal 
incidence these reduce to Fresnel integrals, for which tables exist. Graphical 
representations of the behavior of the wave amplitudes may be found in PENNEY 
and PRICE (1952a). 

PENNEY and PRICE also apply this analysis to an approximate treatment of 
diffraction by a breakwater of finite length and through a gap. The results are 
presumably applicable if the wavelength is small compared to the length of the 
breakwater” or the gap. 

Periodic solutions for horizontal cylindrical obstacles. In two 
physical situations the dependence upon x may be precipitated out, leaving a 
two-dimensional problem which in many cases can be solved by methods analogous 
to those used for the two-dimensional problems of Sect. 17. 

Let the obstruction be an infinitely long horizontal cylinder parallel to Oz. 
This might be, for example, a semi-infinite dock or submerged plane barrier, 
say y = -b, X-CO, a finite horizontal barrier, say y = -b, 1 XI < a, a vertical 
barrier, x =O, - b< Yg 0, a beach, y = - x tan y, etc. Let an incoming plane 
wave at infinity propagate at an angle M to the x axis: 

qr (% Y, z, t) = A cos[m(xcoscr+zsina) +ot]. (18.11) 

Although one will not expect the velocity potential @ to be periodic in x, it seems 
reasonable to assume that it will be periodic in z. In fact, we shall assume that 

@(x, y, 2, t) = q (x, y) e--i(m8sina+ot), 

where v (x, y) must now satisfy, with k = m sin a, 

(18.12) 

~a+ p)yy - k2 3, = 0 (18.13) 
and the usual conditions on the free surface and rigid boundaries. 

We should have come to the same conclusion if we had assumed an incoming 
wave at infinity of the form 

q(x,y,z,t) =Acoskzcos(k,x+at), k2+kf =m2, (18.14) 

a so-called short-crested wave (note that we assume k2<m2). That is, we shall 
now look for a solution in the form 

9, (x, y, z, t) = pl (x, y) cos k z eMiut (18.15) 

satisfying Eq. (18.13) and the conditions on the free surface and rigid boundaries. 
Thus, a solution for one of these cases carries over easily to the other. 

The problem is thus reduced to one almost identical with that of Sect. 17, 
with the exception that the two-dimensional Laplacian is replaced by (18.13). 
Many of the same methods may be carried over, e.g., the reduction method and 
the integral-equation method. HASKIND (1953) has considered some general 
aspects of the problem which will be outlined below, has derived the source solu- 
tion of (18.13), and has treated the diffraction about a vertical barrier (an ana- 
logue of the problem treated in Sect. 1 ~a) and a finite dock, all in infinitely deep 
water. MACCAMY (1957) has derived a source solution of (18.13) and treated 
the finite dock problem in water of finite depth. HEINS (1948, 1950, 1953) has 
given source solutions of (48.43) f or finite depth and formulated and solved 
Wiener-Hopf integral equations for semi-infinite docks and submerged horizontal 
barriers. GREENE and HEINS (1953) treat the submerged barrier in water of 
infinite depth. The literature for beaches will be given in Sect. 188. 

Handbuch der Physik, Bd. IX. 35 
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546 JOHN V. WEHAUSEN and EDMUND V. LAITONE: surface Waves. Sect.8 18. 

Suppose the fluid infinitely deep and let a cross-section of the obstacle have 
contour C. We wish then to find a solution 91(x, y) = v1 +ipl, of (18.13) such 
that 

p%=O on C, 

yY (x, 0) - Y pl (x, 0) = 0 on the free surface, 

Ag v - - @Y e--ikW + q- evY e”kzx as x++oo, ’ (18.16) 
a 

Ag B-g ,y - - e?Y e-*&x+ - 
a a evYe--iklx as X-+-W, 

where k: -c v2. HASKIND (1953) applies the reduction method in the following 
manner (we follow his presentation closely). Introduce the function f(x, y) by 

af Q -=-- 
ay ay vvm (18.17) 

Then f also satisfies (18.13) and 

fy (% 0) = 0 on the free surface. (18.18) 

Consequently, f may be extended into the upper half-plane by defining f (x, - y) = 
f (x, y) and f now satisfies (18.13) in the whole plane outside the contour C and 
its mirror image c. Moreover, [ f 1 -+O as x2 + y2-+ co. Assuming that f is known, 
one must now try to reconstruct 9 from f in such a way that conditions (18.16) 
are satisfied. In order to do this, HASKIND differentiates (18.17) with respect 
to y, subtracts from 

fz,+fyr-k2f =o> 
and after some easy manipulation obtains 

&b-f) +k:(v-f) =-v($+vf). (18.19) 

Treating this as a differential equation for pl- f, he finds the following solution 
for 91: 

(18.20) 

the integrals being taken along half-lines parallel to the x-axis and below C. 
One may verify without great difficulty that v satisfies (18.13). The asymptotic 
form of q~ as x-+& 00 may be written down immediately, and gives 

~eF:ihx e+ik~E(fy+vf)d~+~eYYe-ik,r, 
2i k, s 

-cc 

(18.21) 

the path of integration being a line below the body. Consider now the region D 
bounded externally by this line and a large semicircle containing C + C and 
internally by C + C. Application of GREEN’S Theorem to / and x = exp (- v y + 
i k, x) shows that M 

e-YYJeikle(fy+vf)a~= J(fxm-xf,)ds, -cc c+c 

e-“L[e-iklE(i, +vf)d% =cic(fjfi-jf,J ds. 
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Sect. 18. Three-dimensional progressive and standing waves in unbounded regions. 547 

Hence, the asymptotic conditions are satisfied and, moreover, 

By a similar application of GREEN’S Theorem HASKIND shows that one may also 
write Y 

y,=f +ye*Y 
.I 

fe-v’ldq +B%evYiik,~ +Age~y--it&x 
u u 9 (48.23) 

co 

where the plus sign is used for points to the right of C and the minus sign for 
points to the left. It is easy to verify directly that 9 satisfies (18.13) and (18.17) ; 
however, (18.20) allows one to investigate the asymptotic behavior more simply. 
If pl has no singularities, then (17.3) must also hold here, i.e., (B+)a+(B-)2+ 
2AB-=o. 

This result may be used to find the source solutions giving outgoing waves 
at & co. For Eq. (18.13) the singular solutions for the whole plane’are known 
to be the Bessel functions K, (kr), where y2 = (x-a)” + (y - b)2. To find the 
solution corresponding to (13.22), one assumes it may be expressed as 

with rf = (X - a)2 + (y + P), where q. has no singularities for y<O. Then f,, = 
Q),,~ -v q. may be extended as a regular solution of (18.13) to the whole plane. 
Also, 

fey (X> 0) = 2 -say Kl (k 5) ly=o. 

One may then show that this relation holds for all y 5 0 : 

or 
fl&Y) =2-&Km, Y 50, 

fo (x2 Y) = 2% (k VI) * 

Substitution in (18.23) with A =0 and direct computation of B* from (18.22) 
by taking C as a small circle about the singularity gives 

G =~~(kr)+K,(kr,)+2vevYTYe-‘,yKo(k~~) dy-2ni~eY(Y+b)rrkl(x--a), (18.24) 
1 

For HASKIND’S applicationmof this method to the diffraction about a vertical 
and a horizontal barrier we refer to the original paper. Force and moment are 
obtained in terms of Mathieu functions. For the horizontal barrier in water of 
finite depth we refer to MACCAMY’S paper (1957) where a formula analogous to 
(18.24) is derived. 

j3) Waves OTZ beaches. Much of the immediately preceding discussion of dif- 
fraction of plane waves approaching at an angle or of short-crested waves ap- 
proaching normally applies also to this case. One is led to the following boundary- 
value problem for v (x, y) = pli + i P)~: 

1. pw+vyy-k2v=o, k2<v2, 

2. yy(% 0) --yQ)(% 0) =o, 
3. vzsiny+pYcosy=O for y+xtany=O, 

Ag 
) (18.25) 

4. y - ____ evY e-i&z 
c7 as x-z-co, k =v2- k2, 

5. i$+y$-+O as x2+y2-+oo along y+xtany=O. 
35* 

See separate file errata.pdf


See separate file errata.pdf


Ronald W. Yeung
"Surface Waves Online" - Copyright 2002, Regents of the University of California.  All Rights Reserved



548 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 18. 

Many of the authors cited in Sect. 178 considered this problem along with 
the two-dimensional one. In particular, we refer to HANSON (1926)) MICHE (1944)) 
STOKER (1947), WEINSTEIN (1949), ROSEAU (1952), and PETERS (1952). Both 
PETERS and ROSEAU solve the problem for arbitrary angle y, O<ysn [thus 
including the semi-infinite dock problem treated differently by HEINS (1948)]. 
The use of the reduction method limits one here, as in the two-dimensional case, 
to angles y =#x/2q. We shall illustrate the procedure briefly for y =3r/4 and 
y =n/2, following essentially WEINSTEIN’S (1949) treatment [see also BRIL- 
LOTJET (1957, Chaps. I, II)!. 

Since the boundary condition on the free surface and bottom is the same 
in the two- and three-dimensional cases, we may make use of the auxiliary 
function g constructed in (17.49) by using only the real part of the complex 
potential. Thus, for y =x/4 one finds from (17.48) that ur =a,,/~. Hence, from 
(17.50) 

fi(4 =@,(I +qg, 
and 

Thus, the boundary conditions 2 and 3 of (18.25) imply that 

k(~,y)~(~i-Y)(~~-~)~(~,y)=~ On y=opx>o 
and x =0, y<O. 

We recall that the definition of v (x, y) has been extended from the original wedge 
by reflection in the bottom. One must now find a function k(x, y) satisfying 
equation 1 of (18.25) and the boundary conditions (18.26) and which is regular 
everywhere in the extended wedge, 02 6 ZQz-, except possibly at the origin, 
bounded as x2 + y2+ co, and symmetric about the line y = - x. It is known that 
the general solution of this problem is given by 

AnK2~2n+l~(k~) sin2 (2?2+1)6. (18.27) 

A similar analysis for waves approaching a vertical cliff (y = an) leads to 

(18.28) 

Let us take the weakest possible singularity in each case, i.e., Kl for the 
90” cliff and K, for the 45” beach. Consider first the vertical cliff. Taking account 
of the relation Kh (u) = - Kl (u), we have 

a (i?v 1 --Y cp(x,y) =-A,“$Ko(kr). 

We may then identify - A,K,/k with f and from (j&23), with B* =o, we have 

~=--~~Ko(kr)-Ao~evY “e- 
s 

YsKo(klX2+ep)dq + “,” @‘Y--ih~, 
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Sect. I 8. Three-dimensional progressive and standing waves in unbounded regions. 549 

where A, must still be determined so that ~~(0, y) =O, y< 0. In computing q.~% 
as x+0, one must remember that K,(U) -In (21%) as u-s-0. Hence, one finds 

Setting this equal to zero, one finds 

A Ag ik, o=---.-* 
k a ?cv 

Substituting above and separating the real and imaginary parts of p, = pli + i P)~, 
we obtain an everywhere regular solution vi and a solution qz with a singularity 
at the origin and 90” out of phase at x = &: 

fpl(x, y) =~evYcosklx, 

p,(x,y)=--$$; /e-“~K,,(kj/~~) dq] + s 
00 

Ag +-e”ysink,x. 0 

The corresponding equation for (18.27) can be written in the form 

pl(x,y) =A,K,(kr)sin2~=~~~~KD(kr). 

One can find its integration discussed in ROSEAU (1952, Chap. IV). A 

(18.29) 

(18.30) 

solution 
for the next simplest case, y =30”, does not seem to have been published. For 
y = 45” the regular solution ill, and singular solution q2 as given by ROSEAU, 
but corrected according to personal communications from ROSEAU and LEH- 
MAN, are 

vl=Al {e”Y [k, cos k, x - v sin k, x] + eevx [k, cos k, y+v sin k, y]} , 

plz=A,{e”y[~cosk~x+k1sink,x]+e-“X[~cosk1y-k1sink,y])+ 

v2+k; ~- 
+A,=- -K,(klx2+y2) Svemyx j%6K,,(kI/fi~) dt + 

-co 1 (18. 
-+ue”YSme-.?R,(k]!x2-I-gP)dy-u2e’YSMd~e-Y” 

Y Y 

f,e~v~~d~e’“~K,,(kllh2f))}. ) 
-co 

In order to satisfy condition 4 of (18.25) one must take 

A -Ag v--i4 
kf-/-v2 ’ 2 CJ 

.- 
k; + v2 ’ Q1=Qll+M2* 

Edge waves. In the investigation of diffraction of waves on horizontal 
cylindrical obstacles and of waves on beaches, it was specifically assumed that 
k2 < m2. This was automatically fulfilled for plane waves approaching at an angle, 
but needed to be assumed for short-crested waves. For the short-crested waves 
there also exist standing-wave solutions which can be exhibited in certain cases 
for k2>m2. Such solutions were apparently first noticed by STOKES (1846, 
p. 7 = 1880, p. 167) in connection with the propagation of waves in a canal of 
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550 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 18. 

non-rectangular cross-section. Certain peculiarities of these solutions have been 
pointed out by URSELL (1951, 1952). 

Consider the first three conditions of (18.25) for waves on a sloping beach, 
but with k2>v2. Then one may verify directly that 

y(x, y) = eklYsiny--xcoSyl 

is a solution. This gives a velocity potential for standing waves: 

where 
0 (x, y, z, t) = ek[Ysiny--xcosyl cos (k x + E) cos (o t + z) , 

ksiny =02fg. 

(18.34 

The wave amplitude is bounded at the origin and drops off very quickly as x 
increases. Clearly, one must have yc $z. URSELL has pointed out other interest- 
ing aspects. For a given y and 0 there is only one allowable k, i.e., it is a discrete 
point of the spectrum. In the case discussed earlier with k2<v2 all values of k 
between 0 and v were allowable. In addition, the total energy per unit length 
in the x direction is finite for the Stokes edge wave. 

From (18.29) one may construct a progressive wave moving in the direction 
Oz with velocity. 

c- gsiny . 
(T 

There is evidence that such waves have been observed in nature (cf. MUNK, 
SNODGRASS and CARRIER 1956;Do~~ and EWING 1956). 

URSELL (1952) has shown that (18.32) is only the first in a sequence of solu- 
tions of this nature for a sloping beach. He shows, in fact, that the following 
velocity potential also satisfies the condition: 

@ix, Y, x,4 = {e- k[zcosy-ysiny] + i A,, [e-k[XCOS(2m-~)YfYsin(2~-~)Y + 
?%=I 

I 

(18.33) 
+ e-k[~~S(2~+l)Y-Ysin(2~+l)Yl] cos (k z + 8) cos (it + z), 

where 

It follows from the last condition that one must have 

where vz =O will be taken to indicate the Stokes edge wave. Thus, for fixed wave 
number k, the above formula gives one frequency cr if *n > y > in, two if 
QPZ > y > &n, etc. An experiment carried out by URSELL confirms the existence 
of these other modes of motion. The solutions (18.33) for y =z/2(2n. + 1) have 
also been given by MACDONALD (1896). At these critical angles the solution 
(18.33) does not vanish as x--f 00. MACDONALD apparently discarded the other 
solutions as being of little interest, not “being sensible at a distance from the 
edge I’. ROSEAU (1958) has recently carried through a systematic investigation 
of edge waves, including ones with singular behavior at the edge. 

KELDYSH (1936) has stated without proof that for y =45’ the Stokes edge 
wave and the function yr from (18.31) constitute a complete set of bounded solu- 
tions in the sense that for any absolutely integrable function f (x, y), x = 0, the 
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following Fourier-integral-like theorem holds [cf. formula (16.5)] : 

x{[K,e-““+K,cosK,x--sinK,x][K,e-~e+K,cosK,E-YsinK,5]+ 

+2k2exp(--((x+~)/~Z)}. 

It is possible to construct other types of edge waves. First we rederive the 
Stokes wave from the third formula in (13.5) with a =o. A surface satisfying 
@% = 0 is defined by 

9’ dy - @Y - _ 
dx @, l/k22 ) 

or -___ 
y=--tany+C, tan y = v/lk2 - v2, 

where we may set C =O since it does not provide essentially different solutions 
for the bottom. This is just STOKES’ solution. 

One may expect to find a different type of solution by using the third equa- 
tion of (13.6) with a =O. Here the corresponding solution is 

- log 
sinh m,, (Y f h) 

sinh m, h (18.34) 

where again we have dropped an added constant. This describes a bottom which 
starts as a sloping beach and approaches, as x-+ 00, a flat bottom at depth Jz. 
The initial slope of the beach is as/g vm. The velocity potential describes 
edge waves for such a configuration. 

One may proceed in the same fashion with the last formulas of (13.5) and 
(13.6). They turn out to give identical bottoms : 

(18.35) 

This corresponds to edge waves along an overhanging cliff in water of finite 
depth. The initial backward slope of the cliff is us/g vk2 +mf . 

A particularly interesting sort of edge wave, although the name is now a 
misnomer since there is no edge, has been .discovered by URSELL (1951). He has 
shown the existence of standing waves of the form 

cp(x, y) coskzcosat 

in the neighborhood of a fixed submerged cylinder of radius a if ka is small 
enough. The waves are symmetric about the vertical plane through the axis of 
the cylinder and decay exponentially as 1x1 increases. One can, of course, also 
construct waves progressing along the cylinder. 

URSELL calls such modes of motion “trapping modes” since, if they occur 
in a canal with sides given by z =O and z =~n/k, no energy is radiated away, 
even though there is a path of escape. In fact, the motion is similar in this respect 
to standing waves in a basin of finite extent. The edge waves considered above 
also can be used to construct trapping modes. 

y) Waves ilz calzals. The propagation of periodic waves along a canal leads 
to problems similar to those occurring in the propagation of waves parallel to 
a beach. Let the canal be parallel to Oa with cross-sectional contour C. We wish 
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552 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. IS. 

to find 
@(x, y, 2, t) = cp(x, y) cos (k ii - ot) 

where pl(x, y) satisfies 
%x+p)yy-~2P=o~ (48.36) 

q$(x,O)-YyqX,O) =o, 1)=02/g, 
on the free surface, 

% = 0 on C. 

It will also be assumed that IJ$ + cp; is bounded. 
Clearly the same equations arise in searching for standing-wave solutions 

in a horizontal cylindrical basin with cross-sectional contour C bounded at 
either end by vertical walls at a distance 1 apart. In this case k is restricted to 
the values IZZ$. For progressive waves solutions with k =0 are, of course, of no 
interest. 

The special case when C is a rectangle has already been discussed in Sect. 14~. 
The configuration for C which seems to have attracted the next most attention 
is a triangular one in which the two sides are inclined at the same angle. KEL- 
LAND (1844) was apparently the first to consider this problem for infinitesimal 
waves, limiting his treatment to angles of 45”. The matter was treated system- 
atically by MACDONALD (1894) who states that a solution with the properties 
of (18.36) exists only for angles y =45” and y =30”. This does not exclude the 
possibility of the existence for other angles of a periodic progressive wave with 
a curved wave front, for these would not be described by the assumed form of @. 

The solutions for y =45” can be obtained from the fundamental solutions of 
(13.6), but it is nearly as easy to find them directly. In the third formula of (13.6) 
let a=b=$A, k2=2mi. This gives the velocity potential, after forming a pro- 
gressive wave, 

@(x,y,x,t) =Acosh+(y+h)cosh+cos(kz-ot). (18.37) 

Let the sides of the canal be given by y = & x-h. Then it is easy to verify that 

~~lly=x--h=-~++~ly=z--h=O, ~ly---x--h=dix+~~ly=--O--lz=O, 

so that the boundary conditions are all satisfied. Since 

a2=gm,tanhm,h =kgktanhkkh, 

the wave velocity is given by 

(9 = * tanhg. (18.38) 
If rni>rni [in the notation of Eq. (f3.6)], there will be i further symmetric 

modes. In (13.6), formula 4, set a = b =&A and add this to formula 1 with a = A, 
b = 0. This gives 

@(x, y,z,i) =A [cosm;(y + h) coshlk2+& + 

+ cash m, (y + h) cos lrn; - k2 CC] cos (kz -at). 

One may again verify easily that @* = 0 on the two sides of the canal if k2 = mt-- rnf . 
Hence this mode of motion will exist only if mi>mf . For given o there will be 
no modes of this sort if h is small enough, for then rni < 9%:. The number gradually 
increases as h increases. If h and k are fixed and o allowed to increase, there will 
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be an infinite sequence or, 02, . . . 
(n+& n as n-+-m. 

for which k2 = rnt- rnf will be satisfied ; ot h/g -+ 
The situation is easily visualized, byaplotting on one graph 

tanh mh, - tanmh and (u”h/g)/mh. One may write the potential function in 
the form 

@(% y, z,t) = A [ cosmi(y + 12) coshm,x + coshm,(y + 12) cosmix] cos(kz-- ot), 

where 
m,tanhm,k=v, mi tan mih = - v; k2=mi-- rn;. (18.39) 

The velocity is given by 
c2 = g mO tanh m,, h 

m:-m,P * (18.40) 

Asymmetric modes of motion also exist, having first been noticed by GREEN- 
HILL (1886). These cannot be deduced from (13.6) but must be found directly. 
The velocity potential corresponding to (18.37) is 

Qi (x, y, x, 2) = A sinh k (y + h) sin + x cos (kz - ot) (18.41) 

The wave velocity is 
c2 = & coth % 

kliZ li2 ’ 
(18.42) 

which approaches infinity as kh-to. In addition to this mode, other asymmetric 
modes may exist under conditions similar to those required for (18.39). The 
velocity potential for these modes is 

@(X,Y,G4 =A[ sin lzi (y + h) sinh lz,,x + sinh tiyto (y + 12) sin six] x 

x cos (kz - ot) , (18.43) 

where 
fi,cothH,h =v, rticotfidh =v, kz=ni- $. 

The velocity of propagation is given by 

(18.44) 

The solution for the angle y =30” will not be discussed here. It can be found 
in LAMB’S Hydrodynamics (1932, p. 449) as well as in MACDONALD’S paper cited 
above. 

One may construct other possible contours for the canal cross-section by 
starting from one of the solutions (~3.5) or (13.6) and finding surfaces for which 
@%=O. Thus, from the third equation of (13.5) form 

@ = A eyY sinh x lkZ - v2 cos (kx - ot) . 

Solution of the differential equation d yjdx =@$Dz leads easily to 

r+h=+J log cash x ]lk2 - v2 

as an equation for the contour of a possible canal. The contour is reasonably 
shaped but varies with the choice of k. Also, the method is unsatisfactory in 
that it gives no information about other possible modes of motion. 

19. Problems with steadily oscillating boundaries. Such problems include 
waves resulting from forced oscillation of a submerged body and the waves as- 
sociated with steady oscillations of a freely floating body in oncoming waves. 
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In this section we shall assume the fluid of infinite extent. Waves in an oscillat- 
ing bounded basin will be discussed later. The mathematical treatment has much 
in common with that of the last two sections, the scattered wave of those sections 
becoming the forced wave of this one. 

a) Forced oscillations. Suppose that the surface of the oscillator in its equili- 
brium position is represented by F(x, y, z) =O. Let us take it, for example, to 
be oscillating vertically with amplitude E. Then the equation of the oscillating 
surface S may be written F(x, y, z, t) =F(x, y +&a sin ot, x) =O where a is some 
length dimension of the oscillator. This E will be taken as the expansion para- 
meter in the perturbation procedure. In the perturbation theory of Sect. 10, 
we were concerned only with the functions @(x, y, x, t) and 7 (x, y, t). However, 
we must similarly expand F before substituting it into the boundary condition 
satisfied on the surface of the oscillator, namely, 

F,@.+F,,@Y+F,!Szj-&=~ on F(x,y,z,t) =O. (19.1) 

The expansion for this case is 

F(x, y + E a sin at, z) 

=F(x,y,z) +easinotF,(x,y,x) +~sZa2sin20tFY,(x,y,z) f++.. 1 
(19.2) 

We don’t wish to restrict ourselves to this one mode of motion for the oscillator, 
but an examination of the form of this and similar expansions indicates that, we 
may assume in general that the surface of the oscillator can be represented by ,the 
series 

F(x, y, z, t) = F’O)(x, y, z) + E [Fi’) (x, y, x) cos ot + FJl’(x, y, z) sin ot] + 
+ time-periodic terms in higher powers of E = 0, 1 

(19.3) 

where F(O)(x, y, z) =O is the equilibrium position of the oscillator. We may now 
assume either that CD is periodic, i.e., 

@(x, y, .z, t) = z vln (x, y, 2) cos n at + pzn (x, y, 2) sin n at (19.4) 

or, more simply, that it is simple harmonic, 

@(x, y, 2, t) = yh (x, Y, 4 ~0s ot + y2 (x, y, 4 sin at, (19.5) 

where each function vi,, or yi is still to be expanded in a perturbation series. The 
two assumptions are not quite equivalent, even for the first-order theory, but 
since under certain conditions (19.4) leads to the same first-order equations as 
(1g.5), we shall assume the latter form, together with 

q(x,.z,t) =rj1(~,2)~0~~t +r,(x,z)sinot. (19.6) 

Substitution of the perturbation series into the exact equations and boundary 
conditions, as in Sect. 10, then leads to the following first-order equation and 
boundary conditions : 

1. dy$=o, k=1,2, 

2. ~k’;(x.o,~)-~~~)(x,o,z)~=o’ k=1,2, 
(19.7) 

3. grad F(O) e grad &) + OF;) = 0 on F(x, y, x) = 0, 

4. grad F(O) . grad&)-oFi’)= 0 on F(x, y, z) = 0. 

One should note that it is a natural consequence of the method that the 
boundary condition on the oscillator is to be satisfied at its equilibrium position. 
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If we let 

&(%Y,4 =&y 4(%Y,4 =g& for F(O’(x, y, Z) =0, (19.8) 

then conditions 3. and 4. of (19.7) may be written 

where 
p~)=A(x,y,z) on F(O)=O, (19.9) 

pl'l' = &' + i&l' and A =A,+iA,. 

We shall henceforth drop the superscripts and consider only the first-order 
equations. In addition to Eqs. (19.7) the functions vi must also satisfy the usual 
conditions on fixed solid boundaries, yin =O, and, if the fluid is infinitely deep, 
Igrad~j-to as y-t-co. Finally, one needs a boundary condition to ensure 
only outgoing waves at infinity. As has been pointed out by URSELL (1951), 
the foregoing conditions are not always sufficient to guarantee uniqueness of 
solution. 

KOCHIN (1939, 1940) has considered the general mathematical problem in 
water of infinite depth for both two and three dimensions. HASKIND (1942b, 
1944, 1946) has extended KOCHIN’S methods to water of finite depth. The fre- 
quently-cited paper by JOHN (1950) treats the theoretical aspects of the problem 
in a thorough manner and includes many of the results of KOCHIN and HASKIND. 
Special problems have been considered by numerous authors. HAVELOCK (192913) 
considers the waves generated by oscillation of a vertical plate extending to the 
bottom in water of infinite depth for both two and three dimensions, and in 
water of finite depth for two dimensions; he also considers waves generated by 
oscillations of a vertical cylinder. MACCAMY (1957) has treated the three-dimen- 
sional problem in water of finite depth. KENNARD (1949) has treated the two- 
dimensional problem as an initial-value problem. URSELL (1948) has considered 
waves generated by oscillation of a vertical strip with finite depth of immersion 
in water of infinite depth; the treatment is two dimensional. ALBAS (1958) treats 
a similar three-dimensional problem in which the motion is periodic along the 
length of the strip. In a later paper URSELL (1949b) considered the waves gene- 
rated by the rolling of long cylinders of ship-like cross-section. In addition, 
URSELL has treated the waves generated by a heaving half-submerged circular 
cylinder (1949a, 1953c, 1954) and by a pulsing submerged cylinder (1950). 
HAVELOCK (1955) has treated the wave motion generated by a half-submerged 
sphere. Certain mathematical aspects of this last problem have been examined 
in more detail by MACCAMY (1954). Because of its interest in connection with 
the heaving motion of a ship there exist many papers attempting to compute 
approximately the force and moment on a heaving shiplike body resulting from 
wave formation. We mention particularly one by GRIM (1953). In the cited 
papers by KOCHIN and HASKIND certain special problems are solved approxi- 
mately; by improving the approximation, LEVINE (1958) has clarified certain 
anomalous results of KOCHIN for an oscillating horizontal plate. In addition, 
HASKIND (1942, 1943b) has considered the motion resulting from forced oscil- 
lation of a plate, or a system of plates, on the surface. In a more recent paper 
HASKIND (1953 a) has developed a method for finding solutions, and in particular 
the force and moment on the body, for a wide class of two-dimensional contours 
of ship-like cross-section. One should also consult a recent expository paper by 
MARUO (195 7). A general survey of methods of generating waves in the laboratory, 
including some account of theoretical results, may be found in a recent paper 
by BIESEL and SUQUET (1951, 1952). 
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This brief summary of papers on forced water waves is by no means complete 
but lists many of the important papers andindicates the richness of the literature. 

As was stated in the introductory remarks, the theory of forced water waves 
is mathematically almost identical with the diffraction theory. If one interprets 
the value of --XQ1/& on the body as the function describing the motion of the 
oscillator, then it is clear that the ,prdblems are the same. Hence, the general 
remarks about existence of solutions, uniqueness, ,and special methods carry over 
directly and will not be repeated. However, we wish to consider here one further 
topic in the general theory. 

KOCH&S H-f unction. The H-function was apparently first introduced by 
KOCHIN (193 7) in connection with the theory of wave resistance. He later extended 
it (1939, 1940) to waves generated by oscillating bodies, and it has become a 
standard device among other Russian workers in this field, especially HASKIND, 
who has extended its definition to other situations. 

Each potential function ~1 satisfying the boundary conditions has associated 
with it an H-function which is related to it much in the same way that the Fourier 
transform of a function is related to the function. One of its chief virtues is that 
it allows one to give compact formulas for force and moment on an oscillating 
body (in the present context) as well as certain other quantities. It is also some- 
times helpful in suggesting approximate solutions. 

Let us suppose that the surface S of a body of bounded extent is oscillating 
in some manner in fluid of infinite depth and let a, = plr+i 9, be the solution to 
the potential-theory problem formulated earlier. Let S, and S,. be two closed 
surfaces lying below y =O with S, enclosing S, and S, enclosing S. Let us denote 
the source potential introduced in (13.17”) by G(x, y, z; 5, q, [), .where (6, q, [) 
are the coordinates of the singularity, and let us write it as a contour integral: 

G(x,y,z;&q,[) =++$--d@fdk;&; ek(y+rl--i(x--b)cos8--i(a-.5)sin8) 
, (19.10) 

-72 0 (L) 
where the path L passes below the singularity at k =v =8/g. [The residue at 
this point gives exactly the imaginary part of (1~.17”).] 

Now apply GREEN’S Theorem to the region between .S, and S, (the following 
argument is very similar to a two-dimensional one used in Sect. 17~ in discussing 
the integral-equation method) : 

Then v(i) may be extended to a function harmonic in the whole space exterior to 
S, . vcz) is harmonic in the whole interior of S,, but since S, may be indefinitely 
enlarged as long as it remains below y = 0, v(z) may be extended to be harmonic 
in the whole half-space, yd 0. Consider now the function 

(19.12) 

w satisfies the free-surface condition and the condition at infinity. Moreover,, 
since G =r-r+a function harmonic in the lower half-space, y----w is harmonic 
in the lower half-space and satisfies the other boundary conditions. But then 
92--9+2=O,asf 11 o ows from a uniqueness theorem proved by KOCHIN (1940, Sect. I). 
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Hence, we may write 

Now define 

H(k, 6) = JJ e~I~+~Bco~BtX~i~@)l (yB (E, q, 5) - 

” kcp[COS(lz,~) + . z cos 6 cos (12, 6) + i sin 6 cos (YZ, C)]} da, 
= JJ ek[q+itcost9+itsin4] 

1% (6, yI* 0 + 

: i cos 6 [y, cos (?Jz,t) - q+ cos (?z, $1 + 

+ i sin 6 [pl, cos (q [) - Q1: COS (12, q)]} do. 

’ (19.14) 

Then, after some manipulation with (19.13), one can show that 

~,(x>Y>z) =&~~[rp&($)-+~]d+ 
s, 

- &/df$ik __ kfv 
I 

(19.15) 

k-v 
ek(y-izcos4+iasin+9) ff(k, 6). 

-?I 0 CL) 

We give a few of KOCHIN’S derived formulas. The asymptotic form of the 
free surface in a direction dc is given by 

as R-too. (19.16) 

The rate at which energy is being carried off by the waves (and hence also the 
power input) is given by 

N = & $$H(v,B)2d& (19.17) 
0 

The force components on the oscillating body, averaged over a period, are given by 

The formulas can be derived from (8.4), (9.4), and asymptotic expressions for y. 
In formulas (19.14) and (19.15) the surface S, over which the integrals are 

taken may be contracted to S. This sometimes makes it possible to express H 
directly in terms of known boundary values. If M can be expressed by means of 
a source distribution, say 

y(x,y,z) =~SS,(E,r,r)G(x,y,z;~,r1,5)do, 
s 

(19.19) 
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then one has 
(19.20) 

In order to find approximate answers, Kochin frequently uses the distribution y 
which would be proper in an infinite fluid without free surface, substitutes this 
in (19.20) and then uses the resulting approximation to H in (19.17) and (19,.18) 
above. The procedure may be looked upon as the first two steps in an alternating 
type of approximation in which one first satisfies the boundary condition on the 
body, neglecting the free surface, next corrects this so as to satisfy the free-surface 
condition, but now disturbing the condition on the body, then corrects again to 
satisfy the condition on the body, etc. This method of approximation has fre- 
quently been used by HAVELOCK (e.g., 1929a). 

KOCHIN ($939) has also defined the H-function for two-dimensional wave 
motion excited by an oscillating body. We simply reproduce the formulas. Let, 
as usual, f (.z, t) = fi(z) cos ot + fz(z) sin at be the complex potential and let C, 
and C, be two contours in the lower half-plane containing C, C, inside C,. Define 

H,(k) =JeFik’fi(C)dc, s=1,2. (19.21) 
Cl 

Then 

f;(z) = &~$$dC - &Jas(k) ewik8dk - 
\ 

Cl 0 

O”ii (k) 
(19.22) 

- f PVJ’+, emikzdk + (- ~)~+l Hs+l(v) emivr, 
0 

where H3 = HI. This follows immediately from a formula similar to (17.15). 
For the asymptotic form of the waves one gets 

7 (x, t) E Re z [gr (Y) - ;i?,(v)] e--i(VX-Ut) as x-++co, 

q(X,t)z.Re$ 
(19.23) 

[Ill(v) + iiT,( e+vx+ot) as x--f - 00. 

The rate of dissipation of energy is 

N=.~Q~[IH,W+ +IH,b4121. (19.24) 

The mean values of the force and moment, averaged over a period, are 

O”k+v y”“=$pyk-y (IH,(k)12+IHz(k)12)dk, 
0 I 00 (19.25) 

Ma”= -&Im PV 
{ .I’ 

~[H;l;i,+H;H,]dk~+ 
0 

Roughly the same remarks apply to the use of the two-dimensional formulas 
as of the three-dimensional ones. 

Waves from an oscillator in a wall. In order to illustrate the use of 
the H-function, we consider the following problem. Let the (y, x)-plane be a 
rigid wall expect for a certain bounded area S in which there is a membrane 

See separate file errata.pdf


Ronald W. Yeung
"Surface Waves Online" - Copyright 2002, Regents of the University of California.  All Rights Reserved



Sect. 19. Problems with steadily oscillating boundaries. 559 

oscillating according to a given law 

x = F(y, z) sin ot, (y,z) in S. (19.26) 

The boundary condition which has to be satisfied on the plane x =0 is then 

~F(Y,z), (Y,z) in S 
(y, z) not in S, 

(19.27) 

where we still have v = vr+ iq~, . 
This boundary condition, as well as the ones at infinity, can be satisfied 

by distributing “modified” sources (13.17”) or (19.10) over S with density 
- oF(y, x)/2x 

In order to compute the H-function, we shall interpret the source distribution 
as representing a thin body making symmetric pulsations in an infinite fluid. 
Hence, we may assume that the wall is removed and the membrane replaced by 
a doubled one. (That the requisite motion is physically impossible doesn’t 
invalidate the considerations; a more realistic model can easily be devised.) In 
(19.14) we take S, to be both sides of the thin body. Then, remembering that 

v~((+o,q,C) =yzo,(o,q,O =aF, q~,s(-O,v,f) =- p?z(O,q,C) =aF, 

cos(?z,t) 71 for x>O and cos(+z,l) =--1 for X-CO, 

one finds easily that 
H(k,6) = 2oJJF(q,[) ek(‘J+i~sin8)dyd[. 

S 
(19.29) 

From (19.17) one then finds immediately, after carrying out the 6 integration, 
that the rate of dissipation of energy to one side is given by 

N=~~~dydzSSdrd~F(y,z)F(ri,i)e’(Yfn)J,(r(z--)). (19.30) 
s s 

Expressions for Y, and 2,” may also be written down. The result X,,=O is 
not really significant because the integral is over both sides of the thin pulsing 
body. 

The theory for generation of two-dimensional waves in a semi-infinite channel 
by a vertical wave maker in the end-wall is easily derived in the same way. If 
the motion of the wave-maker is described by 

then 
x =F(y)sinat, adySbS0 

HI(k) =JbekqW dq, H,(k) =o, 
a 

(19.31) 

(19.32) 

and, for example, the rate of dissipation of energy is given by 

N = pcr”[!e”YF(y) dy]‘. (19.33) 

The generation of short-crested waves is subject to the limitations described 
in Sect. 14~. Suppose, for example, that the water is of depth lz, the channel of 
breadth b, and that the motion of the wave-maker is described by 

x =F(y) cos kzsincrt, k =%x/b, -hSyl0. (19.34) 
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Then, since cos mi (y +h), cash m,(y +F, form a complete set of functions in 
- hd y+ 0, there is no difficulty in representing F(y) by a series of the fundamen- 
tal solutrons (13.6), but if k2>m,2, no progressive waves will move down the 
tank (within the limits of applicability of the linearized theory, of course). The 
analysis of the filtering effect of the tank on more complicated wave-maker 
motions can easily be carried through by Fourier analysis. 

Waves from an oscillator not in a wall. Let us now suppose that we 
have a two-dimensional oscillator in infinitely deep water moving according to 
the law 

x = F(y) sin ot, a<y<bSO, (19.35) 

but with no wall present. This small change complicates the solution of the 
problem in a substantial way, the complication being associated with the now 
possible flow under (and over if b<O) the oscillator. In addition, in order to 
ensure a unique solution some further condition analogous to the Kutta- Joukowski 
condition in airfoil theory is required; here the last two conditions of (19.36) 
play this role. Then the boundary conditions to be satisfied on the oscillator 
by the velocity potential 

are 
@ (x, y, t) = q+ cos ot + q2z sin ot 

Qz(o,y,t) =aF(y)cosot, a<y<bl~, 

Qy (0, a, 4 = 0, 
I 

(19.36) 
GQY((O,b,t)=O if b<O, 

The problem is clearly closely related to that of diffraction of plane waves 
by a vertical barrier and could be treated by a modification of the method used 
in Sect. 17~ for that problem. It may also be solved by the integral-equation 
method discussed in Sect. 17~~. A modification of this method has been used by 
URSELL (1948). 

Introduce the complex potential 

where 
@ + i Y = Rei {f (.z) e-jot}, 

f(Z) =f1(4 +if,b) = h+i%) +~bfJl+iYd* 
(19.37) 

We try to construct a solution by means of a distribution of vortices of the 
form (13.28) 

f,(2;5) =& log@ - [) (Z -z) + 5 IV Jql(&Tl dk - ji e--iv+-D (19.38) 
0 

=fvl+ifvz i 
with intensity 

YW =1/1 +ive a<y<b, (19.39) 
along the oscillator : 

f (4 =@hd hJ(z; id Q. (19.40) 

An analysis almost identical with that in Sect. 17% leads quickly to the integral 
equation 

ReiJbyh)fL(iy;ir)dy =~F(Y) +i.o, a<y<b. (19.41) 
a 
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Separating y1 and yz and noting that f: (i y; iv) is real with respect to i, one finds 

~[~~(~)i:l(iY:is)-Yr(ri)f:Y(iY:iTI)IdYl=bF(Y), 

db[X(~)i:8BY:ir)+y~(~)~~~(~Y;~~)l~~=o. 1 

(19.42) 

The equations can be uncoupled by applying the operator [alay -v] to each (so 
that the reduction method enters after all!). Introducing 

rUk=Y;-Vhl G(y) =F’-vF, (19.43) 

one finally obtains the pair of equations 

(19.44) 

J’ 
a 

where we have taken advantage of the fact that vY (f 0, y) = =F y(y) and hence 
y(a) =O; if b<O also y(b) = 0. The integral equations are easily reduced to a 
known type occurring in -airfoil theory1 by the transformation 

r = y2 -- + (u” + b2), Q = “/12 - 8 (a2 + b2) . 

The solution may be written in the form 

/%@I) = 

j/(a2-y2) (y2-b2) “-1 g- y2 ’ ) (19.45) 

P2hl) = 
2rlv 

n v-@~,$j~b”, J’ 
72 (Y) dY * 

a 

It is evident that the solution is not uniquely determined without some statement 
about the total circulation. Fixing the total circulation is equivalent to fixing 
y(b), as follows easily from the form of ~(7) and the relation 

y(q) = ev~Je-‘gp (s) ds. (19.46) 

It is possible to compute the H-function directly in terms of ,u(s). First, we 
note that 

H(A) = Q eeiat f’(c) d[ = 4 e-iac d( jy (y) f; ([; i y) dy 
Cl G a 

=iy (Y) d~te+“~i;(C; iy) d5‘ =Py(Y) eaydy. 
a 

It then ~follows from (19.46) that 
b 

H(A) = -;ieGy (b) - &sL( (Y) cay dy a 
a 

(19.47) 

1 See, e.g., W. SCHMEIDLER: Integralgleichungen . . . , pp. 55- 56. Leipzig: Akademische 
Verlagsgesellschaft I 950, or S. G. MIKHLIN: Integral’nye uravneniya . . . , pp. 149- 154, Gostekh- 
izdat, Moscow $949. 

Handbuch da Physik, Bd. IX. 36 
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One may now apply formulas (19.23) to (19.25) to find the quantities indicated 
there (note that E =H). 

One notes again that the function H(A) is determined only after y(b) is fixed. 
Taking y (b) + o is equivalent to having a singularity at the end. If the oscillator 
is totally submerged, it seems reasonable to set y (b) = 0, as we assumed in (19.36)) 
for then the vertical velocity is continuous at the end, i.e., ply (+ 0, b) = ply (- 0, b), 
as has already been assumed for the lower end at y =a. It is not clear what is 
the proper assumption if b =O, i.e.,.if the oscillator extends through the surface. 
In the similar problem of diffraction by a vertical plate, treated by the reduction 
method in Sect. 17a, the assumption of no singularity at the surface is equivalent 
to assuming y(O) =O. We note that if r(b) =O, then it follows from (19.46) 
and the form of ,u2 in (19.45) that ,uz = 0, and hence that yz = 0. This is not true, 
of course, for yr. 

Waves generated by a heaving hemisphere. We describe briefly a 
procedure used by HAVELOCK (1955) and MACCAMY (1954), and before them 
also by URSELL (1949a) for an analogous two-dimensional problem. Let a hemi- 
sphere of radius a have its center on the free surface in its undisturbed position 
and let it undergo forced vertical oscillations described by 

xa+(y-b,,sinat)2+.$=a2. (19*48) 

Then the boundary condition to be satisfied by ~1 (x, y, z) = ~?i + iqz on the hemi- 
sphere is 

%=b ox=b gcos@ 
ar 0 a 0 

*=O on x2+y2+z2=a2, 
’ ar y 5 0. (19.49) 

91 must, of course, also satisfy the free-surface condition and the radiation con- 
dition, as stated in (19.7). 

The method of the above-named authors is to represent v as a series in which 
the first term is a source at the center, say (13.17), and the remaining terms 
represent only local disturbances of the sort shown in (13.21), with m =0 since 
we have radial symmetry. The source term is actually taken in the form (13 .17”‘). 
Since the source is at (0, 0, 0), r =r, in the formulas and certain terms cancel 
and others double. Let 

co 

qd”)=:-~~J’[vcosky- ksinkylsdk- 
I 

(19.50) 

Then the assumed form for v is 

pl (.x, y> 4 = : an+2 (A, + i B,) pl(‘)(x, y, 2). 
n=o 

(19.51) 

Substitution in the boundary condition (19.49) leads to an infinite set of linear 
equations for the coefficients A,, B,. Numerical methods may then be used 
to find any desired number of terms. 

Having found ~0 approximately, one may proceed to compute the vertical 
hydrodynamic force on the sphere by integrating the pressure p = - Q a@/p/a t 
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over the hemisphere. HAVELOCK carried through an approximate calculation, 
expressing the result in the form 

Y=~s-c~a3b,02[ksinot-2hcosut] 

= -&f.k.+‘- lC2ho+, 
I 

where M’ is the mass of displaced fluid and y,, the coordinate 
The parameter k is usually called the added-mass coefficient; 
damping parameter. Fig. 17 from HAVELOCK'S paper shows 
functions of va. As va+oo, 2h+O and 
k + 8; k (0) = 0.828 . . . . The average 
rate at which work is being done by 
the sphere is 3 z~a~bta3h and does not 
involve k. 

va 
Fig. 17. 

(19.52) 

of the center. 
h is called the 
k and 2h as 

va 
Fig. 18. 

It is of interest to compare the same parameters as computed by URSELL 
(1949a) for a circular cylinder (per unit length). They are shown in Fig. 18. 
The asymptotic behavior of k is given by 

k(va) = -$[log$+ 4 -2log2-y]+oba) 

log&-O.46 +o(va) as va+O, 1 I (19.53) 

k(v4 =1-&+0(h) as va-tm. I 

/I) Steady oscillatiolzs of a freely floatiq body in waves. Let us suppose that 
a rigid body is floating in an infinite ocean with prescribed plane waves approach- 
ing from a fixed direction, say from x = + 00. If the motion has persisted for 
some time, we may suppose that the body is moving with a simple periodic motion 
of the same frequency as the waves. With this assumption the proper formulation 
of the linearized equations and boundary conditions has been derived by JOHN 
(1949). 

Suppose the body is at rest in still water and let (x0, y,,, z,,) be the coordinates 
of its center of gravity. Let GZyZ be a coordinate system fixed in the body with 0 
at the center of gravity and the axes parallel to the space axes 0 x yz. When 
the body is displaced, one may describe its position by giving the new position 
of the center of gravity (5,q, 5) =(x0 + &x1, y0 + E yl, z,, + EZ~) and the Eulerian 

3@ 

See separate file errata.pdf
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angles EU, a/3, ey (we change notation from the customary q~,@, p to avoid con- 
fusion with our other use of these letters). Thus the choice of E implies that the 
amplitude of motion is small compared to some typical body length. The assump- 
tion of Sect. lOa that 0 = E CD(l) +. . . implies that the amplitude of the prescribed 
incoming waves is also small compared to this length. The relationship between 
the two sets of coordinates may be easily found from the usual formulas con- 
cerning Eulerian angles to be of the form 

Z=X-q)-&[CX1-y(y-yYo) +/3(z-zo)] +&2[**.] +*a*, 

T=Y-Yo--Ey(X--II) +YI--(~--Jl +*a., 

I 

(19.54) 
~=2-zo-&[-~((X-qJ fa(.z-20) +zJ +..a. 

Let the surface of the body be described by 

F(Z, y, Z) = 0 (19.55) 

in body coordinates. To find the position in space coordinates one must substitute 
from (19.54) in (19.55). The kinematic boundary condition [see Eq. (19.1)] then 
becomes 

&(gradF(x--o, Y-Y~, Z--zo) . grad cD(~)+F,(x-x~, y-yo, Z--zo) x 

x [-~l-i,(~-~o)-~(~-~o)l+~~[-~1+~(~-~0)-j(~--o)]+ (19.56) 
+F,[--il+&+-xO)-fi(y-yO)]}+ &“{,.,} + 0.. =o. I 

Letting “rz,, lzY, PZ~ be the components of the unit inward normal vector to the 
surface at rest, i.e., 

F(x - x0, y - yo, x - zo) = 0 (19.57) 

(we shall call this surface So), and q = (r -ro) x n, i.e. 

2~=((Y-Y0)~,-(~--0)~,, (r,=(Z-Z0)12,-((X--o)n,, 

4~=(~--o)“y-(Y-Yo)rvx~ i 
(19.58) 

we may express the first-order term in (19.56), after dropping the superscript, 
in the form 

d5, =&fl, ++,r, +%fb +kq, +bqy +$qa for (x, y, 2) on So. (19.59) 

We call attention to the fact that it follows as a natural consequence of the lineari- 
zation that the boundary condition is to be satisfied on the surface in its undis- 
turbed position. 

In order to state the dynamical conditions on the body we introduce the follow- 
ing notations. Let M be its mass and I,, I,, , I,, I,,, Ixy, . . . its moments and 
moments and products of inertia about the body axes selected above. Let V 
be the volume bounded by the plane y =O and the submerged part of the surface 
in its rest position, and let Iv, Is, IF, IF, I,“,, IFy, . , . be the volume, the moments 
and the moments and products of inertia of this volume about the body ‘axes 
in their rest position. Let A be the intersection of the body in its rest position 

A A with the surface y = 0, and let IA, I$, I, , I, x, I&, lfZ denote the area, the moments 
and the moments and products of inertia of A with respect to axes through 
(x0, 0, zO) and parallel to the body axes; e.g., 

I~,=ASS(x-x,)(2-z,)dxdz. 
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The exact dynamical equations are 

M$ = {J 9 cos (n, x) do, 

Mij=~J~cos(~,y)da-Mg, 

I Mt={Sficos(n,.z)do, 

(19.60) 

where S is the wetted surface of the body in its (to-be-determined) position at 
time f and 

~=--gy---e~-geIgradcy12; 

and three similar equations for h, b, ;j. Substitution of the perturbation series 
gives for the zero-order terms 

M =@I”, IF=I,v=O, (19.61) 

i.e., ARCHIMEDES’ law and the statement that the center of buoyancy and center 
of gravity are on the same vertical line. The first-order equations, after dropping 
superscripts, are 

MZ1= --e$SGitZda, 
SO 

We note that the boundary conditions have been derived for general motions 
of the body and fluid, not just for the simply periodic ones for which they will 
be used below. 

JOHN (1949) has used the equations to investigate the stability ,of a floating 
body. We shall not reproduce the results but remark that he shows that the 
usual condition for stability, namely that the metacenter lie above the center 
of gravity, derived from purely hydrostatic considerations, is in fact still a suf- 
ficient condition for stability when the hydrodynamic equations are considered 
(within the limitations of the linearized theory). 

It is also shown by JOHN that the above equations have a unique solution 
for an initial-value problem, i.e., if at some instant the position and velocity of 
body and fluid are prescribed. However, for the problem with which we are 
concerned in this section, steady simple harmonic motion with a prescribed in- 
coming wave, he proves uniqueness only for sufficiently large values of a and 
for bodies such that a vertical line intersects the immersed surface only once 
(e.g., a floating sphere with its center at or above the free surface). 

Knowledge of the motion of a floating body in surface waves is obviously 
of great importance to ship designers, and, as might be expected, there is a large 
amount of specialized literature. However, most of this literature may be con- 
sidered irrelevant to this article for it is based upon the assumption that one may 
neglect the kinematic boundary condition (19.59) completely and, in the dynamic 
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566 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. lg. 

boundary condition (19.62), that one may take for @simply the velocity potential 
for the oncoming wave, thus neglecting the effect of the diffracted waves and the 
waves generated by the ship’s own motion. This assumption is usually called 
the Froude-Krylov Hypothesis. W. FROUDE (1861) introduced it in connection 
with an investigation of ship rolling in waves and A. N. KRYLOV (1896, 1898) 
investigated its implications rather thoroughly for general motions. In spite of 
its apparent crudeness this assumption has been useful in elucidating many aspects 
of ship motions. 

In recent years there have appeared a number of papers in which an attempt 
has been made to take account of the proper boundary conditions, but no attempt 
will be made to summarize this literature. The most systematic investigation 
of the matter has been made by JOHN (1949, I950), HASKIND (1946a), and PETERS 
and STOKER (1957). The papers by JOHN consider the proper formulation of the 
linearized problem for a body with no average forward speed and the uniqueness 
and existence of solutions. Both HASKIND and PETERS and STOKER are primarily 
concerned with ships having a constant average forward speed. PETERS and 
STOKER treat carefully the proper formulation of the linearized problem and 
conclude that HASKIND’S fundamental equations are not properly formulated 
in that some of his terms really belong with the second-order terms and should 
have been discarded. The objection applies also to part of his results for a sta- 
tionary ship. The other part will be summarized below. 

The motion of a ship in waves when it has a nonzero translational velocity 
will not be considered in this article. For this theory one should refer to the 
cited papers, to STOKER’S Water waves (1957, Chap. 9), or to a recent survey by 
MARUO (1957). The transient oscillatory motion of a floating body in calm water 
will be considered later. 

Let us return to the problem of steady oscillation of a floating body in on- 
coming waves. Since we assume steady oscillation, we shall write 

@ = Re {IJJ e&Ot}, (x1, yl, 4 = Re{(a,, b,, co) e-iut}, 

(K, /L y) = Re {bo, PO, yo) e-iut)j 1 
(J9.63) 

where~=~1+i~2,a0=a~+ia~, etc. The unknown function p and the constants 
a,, . . ..yo are to be determined from the equations and boundary conditions. 

We shall assume that di can be expressed as the sum of the velocity potentials 
of the incoming wave, say 

@“=$e”YcosjYx+Gt) (19.64) 

if the fluid is infinitely deep, a diffracted wave @J =v” ewiut and a forced wave 
@, = q+ eTiut resulting from the body’s own motion: 

@=@+@o+cq. (19.65) 

We shall express Gi in the following form (following HASKIND) : 

~~=Re{~1~l+~2jl+~3~1+p14~+~6~+~6j). (19.66) 

Then the kinematic boundary condition (19.59) implies: 

910=-v:, 
pi = lz,, p: = fl,, (19.67) 

Y;=G, 9: = CL, 

See separate file errata.pdf
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all to be satisfied on S,, the rest position of the body. The functions vk, k = 
0,1, . . . . 6, are to satisfy also the radiation condition and the condition at y = - CO 
(or at y = -h for a flat bottom). The dynamical condition (19.62) will be used 
to determine the amplitudes and phases (i.e., the complex amplitudes), but first 
we introduce some notation. Let 

(19.68) 

The constants ,uik and 3Ljk depend only upon the geometry of the body. It may 
be shown by an application of GREEN’S Theorem that pki =pik and ilkj =lj k. 

Let us now *substitute the expanded expression for Q, into, say, the first of 
Eqs. (19.62) (the others may be treated similarly), remembering that PZ~ = mi 
on S,: 

Mjl,=-@~~(~“+~O)tn~do-@~~(~ljl,+...+~~j;)~:do. (19.69) 
so SO 

Consider, for example, the second term of the second integral: 

where we have used the special form of yr = b, e-$Ot. Thus, (19.69) may be 
written 

~~+~u,,)~l+iu2lj;l+~~.+~u,lj;+3Lll~l+j121jl+~~.+jlelj=F,,+For, (49.71) 

where F,, =fer e--iat and F,, = FOX e&Ot represent the x-components of the forces 
resulting from the incoming and diffracted waves and are to be computed from 
the first integral in (19.69). The form of (19.71) explains the names given to the 
(Uij and li, : the pii are called added masses, the A,,, dam@ng coefficients. If one 
now writes x1, . . . . y in their assumed forms in (19.63) and substitutes in (19.71), 
one obtains 

-02(M +,ull) a, - 02,uzl b, - ... - 02,u61y0 - 

i u a,, a, - . ‘. -~~&l%=fex+fOx I 
(19.72) - 

and five similar equations. Since the amplitudes a,, . . . , yO are complex, this gives 
twelve equations to determine the twelve unknown quantities. It is thus clear 
that, providing these equations can be uniquely solved, the problem of finding 
the steady oscillatory motion of a freely floating body can be reduced to the 
solution of several problems of the type studied in Sects. 18 and 19q. From the 
form of (19.72) and the similar equations, it is clear that the complex amplitudes 
are all proportional to the amplitude A ‘of the incoming wave as would be ex- 
pected. 

HASKIND has applied the method outlined above to a body symmetric with 
respect to the (x, y)-plane, e.g., a ship heading into waves. The only possible 
motions are heaving, pitching and surging. In carrying out some numerical 
computations he makes a further approximation that the kinematic boundary 
condition on the body may be satisfied on its plane of symmetry rather than on 
the surface. Although this approximation is perfectly consistent with the linearized 
theory in certain contexts, as will be seen in Sect. 21, it is not consistent with the 
theory as formulated here and must be considered to be a further approximation 
of some sort. 
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Freely floating sphere. Computation of the motion of a freely floating 
sphere with its center at the undisturbed water level can be carried through with- 
out an unreasonable amount of numerical work. The procedure for the heaving 
motion has been carried up to the point of numerical computation by BARAKAT 
(1958) [in an earlier investigation by MACCAMY (1954) the multipole terms in 
the potential for the diffracted wave were omitted]. Part of the problem has 
already been solved in Sect. 19a, i.e., the waves resulting from the forced motion. 

Since the phase at infinity must be kept arbitrary, one must replace (19.48) by 

~~+(y-b~cosot-b~sinot)~+.z~=u~ (19.72) 

However, the solution of that problem may be taken over with practically no 
change, for the velocity potential v2 in the notation of (19.66) must satisfy 

,“,P =+=c0s6 for ~~+y~+z~=u~, yd0. (19.73) 

Thus we need only set b,o=l in (19.49) and later. In fact, from formula (19.52) 

,uz2=$neaS+k, i12,=+7r~a3.2h. (19.74) 

Finding the diffracted wave requires finding an outgoing wave satisfying 

a@ ~ =-~~~y[~o~~-~~in~cos~]~vacos~~--iYaSin2YcoSu, 
I aY y=a (19.75) 

where X=Y sin ~COSU, y=rcos8, Z=Y sin 8 sin a. BARAKAT shows that ~1~ 
can be found as a series in functions of the form (13.21), with b =O and account 
taken of certain symmetries, and functions of the form (13.20) with b =0 and 
m=n. Let 

@a = _pzakm (cos 8) V P22km_l (cos 6) 
yak-l-1 2k-22nz yak I 

cos2mu, 

k=1,2,...; m=O,...,k-1; 
I 

,‘$;Z”-l zz @/y-l(cos 8) 
2k--22nz+2 @k+l I 

cos (2m - I) a, 

k=1,2,...; m = 1, . . . . k; (19.76) 

+27~i(--I)~P+~e”Y 

Then v” may be expressed as follows 

n = 1, 2, . . . . 
I 

co k-l 
Y,==z EA 

W&2k+2G;r+ig ~B;~-la2k+3G;~-’ 

k=lm=O k=l m=l 

where the complex coefficients AiT, Bi;I”-l, C, are to be determined from (19.75). 
No numerical computations seem to be available. 

20. Motions which may be treated as steady flows. In this section we shall 
consider several problems which are time-independent, either by their formulation 
or by introduction of moving coordinates. The flow associated with a constant 
discharge rate through a canal is of the first type; the waves associated with a 
ship which has moved with constant velocity C over a long period is typical of 
the second. 

Ronald W. Yeung
"Surface Waves Online" - Copyright 2002, Regents of the University of California.  All Rights Reserved



Sect. 20. Motions which may be treated as steady flows. 569 

The boundary conditions at the free surface have been derived in Sects. 10 
and II. For three-dimensional motion the velocity potential must satisfy [see 
J-Q. (~I.311 

ply (% 0,x) + $ g&n (% 0,4 = 0; (20.1) 

the equation of the free surface is 

y=q(x,z) =$&O,z). (20.2) 

In two-dimensional motion, if the complex potential f = v + iy is used, then the 
boundary condition may be written 

Re(f”(x +iO) fi~f’(x+io)}=o- (20.3) 

If the potential has been taken in the form F(z) = - cz + f (z) with !8’= 0 as the 
free-surface streamline, then 

Re(f’(x+iO)+i$f(x+iO)}=O; 

the surface is given by 

Y =q(4 =+#(%O). 

On obstructions, which are now all fixed, one has as usual 

(20.3’) 

(20.4) 

tp*=O or y=const. (20.5) 

Far ahead of, or far upstream of, the obstruction the motion must approach 
either rest, or a uniform flow, respectively. 

The general theory of steady free-surface flow about a submerged obstacle 
in infinitely deep fluid has been considered by KOCHIN (1937) for both two and 
three dimensions. HASKIND (1945 a, b) has extended KOCHIN’S treatment to fluid 
of constant finite depth, The methods used for waves generated by oscillating 
bodies carry over with only slight change, so that we shall not consider here the 
general aspects of the theory but consider instead several special problems. 

a) Flow over an ztneven bottom Let us first derive the proper boundary con- 
dition on the bottom. We shall assume that the bottom may be represented in 
,the form 

y =-h +&b(l)(x) (20.6) 

and that the fluid flows from the right with discharge rate q =ch. As in the 
derivation of (10.19) we take 

F(z) =- cx +&f(l)(z) + ,zf(z)(z) + .a.. 
Then the condition that the bottom be a streamline is 

(20.7) 

-c(-h+eb(l)+...) +qP(x, -h+eb(l)+...) +.a. =ch. (20.8) 

Expansion in the manner of Sect. IO and grouping of coefficients leads to the 
boundary condition for y(l): 

y’l’ (x, - h) = c b’l’ . (20.9) 

We may hereafter write w for EW (l) and b for &b(l). We note that the choice of E 
indicates that the amplitude of unevenness of the bottom must be small compared 
with h for the linearized theory to be applicable. 
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Consider now a bottom of the form [see LAMB (1932, p. 409), Wien (1900, 
P* 2oo)l 

y=-h+bb,coskx. (20.10) 
We look for a solution in the form 

f(z) =Acoskz+Bsinkz, (20.11) 
where A and B are complex. Substitution in (20.9, with b(l)= b, cos kx, shows 
that A must be pure imaginary, say iA’, and B real, and further that 

A’coshkh- Bsinhkh =cb,. (20.12) 
Substitution in (20.3), i.e., yY(x, 0) -gcm2y(x, 0) =0 yields 

‘i 

one then finds easily that 
RB = FA’. (20.13) 

(20.14) 

?I(4 = kcoshkkk~vsinhkkCoSkx* 

An interesting consequence is that when c2/gh<1, i.e., when the flow is sub- 
critical, the crests and troughs just oppose those of the bottom, whereas, if 
cg/gh> 1, they occur together. If c2igh = 1, there is no steady flow. Also, when 
c2/gh is close to 1, it is clear that the assumption of small perturbations is no 
longer satisfied. 

By use of the Fourier Integral Theorem one may now construct solutions for 
an arbitrarily shaped bottom, within the limitations of the theorem. For from 

b(x) = +Jd k vph (5) cos k (x - :) dt$ (20.15) 
0 * --oo 

one may derive 

f(z) = ; PVj?dk[b(E) v sin ; ‘,“,i fh+_iyks;;h;C; -5). dE, 

0 --60 

Yj(x) ++ k 
I 

(20.16) 

kcoshkh-vsinhkk dk mb(t)cosk(x-&iS. 
s 

0 -cc 
An examination of the asymptotic properties of these integrals as x--f + 00 shows 
that they do not vanish if vh =gh/c2 > 1. Conditions for the validity of the 
Fourier Integral Theorem, e.g., that b(x) is of bounded variation and absolutely 
integrable, indicate that it applies to situations in which the bottom unevenmess 
is somewhat localized. Hence, it is reasonable to require the additional boundary 
condition 

limq(x) = 0. 
x--f00 

Thus we must amend the solutions (20.10) if gh/c2 > 1 by adding, respectively, 

-vc 
~ :(5) co&2 k, h - v k .I 

cosk,(z--+fh)dl, 
--co I 

O” +- v sinh k, h 
cosh2k,,h -vh s 

b(t) sinho&- E) &!, 
-co I 

(20.17) 

See separate file errata.pdf
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where k, is the real solution of k cash k 12 - v sinh k Jz = 0. We note that the other 
boundary conditions are not spoiled, for the first expression in (20.17) satisfies 

an 
!%h sa%ied. 

i s imaginary (stream-function) part vanishes for y = - h so that (20.3) 

Thus, if c2 > gh there is a local disturbance of the fluid in the region of uneven- 
ness which eventually smooths out. If c2< gilt there is also a local disturbance 
given by (20.16), but as x+ - 00 there remains a disturbance given by twice 
the expressions in (20.17). 

We remark in passing that we might have obtained this solution by distribut- 
ing along the bottom dipoles of the form (13.48) with a =0 and with moment 
density c b (x). 

Various special cases of b(x) may be considered. LAMB (1932, p. 410) replaces 
the unevenness by a single dipole. WIEN (1900, p. 202) takes b (x) = arc tan e x and 
in the limit lets e+ CO in order to find the flow over a small step. However, 
KOCHIN (1938) has treated this problem by a different method and finds that 
WIEN has made an error by a factor of two in the downstream waves (he had 
not satisfied the upstream condition) [see also LAMB (1934)]. The flow about a 
vertical plate in the bottom may be treated by distributing vortices (13.47) along 
the plate with the intensity to be determined by solving an integral equation. 

One will find an attractive discussion of the subject in four papers of W. THOM- 
SON (Lord KELVIN) (1886, 1887). EKMAN (1906) has applied the same method 
to three-dimensional flow. First he finds the form of the free surface over a 
doubly periodic bottom, then applies the double Fourier integral theorem to 
construct flows over irregular bottoms. 

dl 
He analyzes the asymptotic behavior 

of the surface for e case of an isolated dipole on the bottom and presents graphs 
showing the change in wave amplitude for different radial sections. The method 
of analysis may also be extended to superposed fluids of different densities (see 
KOCHIN (1937a, b, 1938c), LONG (1953, 9 4)]. 

/?) Flow about submerged obstacles. Linearization. The procedure for 
linearizing may be carried through in at least two ways, leading to somewhat 
different boundary conditions for the body. Consider a body moving in a fluid. 
For the time being, in order to achieve somewhat greater generality, we shall not 
restrict the velocity to be constant. If the dimensions of the body are sufficiently 
small compared with the depth of submersion, it will not disturb the surface 
appreciably, and one will expect to be able to use the infinitesimal-wave approxi- 
mation. However, the same end is obtained if the body .approximates to a flat 
disc moving in its plane, a line segment moving along its line, a piece of a cylin- 
drical surface moving along the cylinder, etc., various combinations being easily 
visualized. We consider the two situations separately. 

Let F(x, y, z, t) = 0 describe the surface of a bounded body at time t, and let a 
be some typical dimension of the body, say its maximum diameter, and let ,% 
be the depth of submersion measured to some point (x,, - Jz, z,,) of the body. 
Now, consider the family of flows associated with the family of surfaces 

F(“)(x,y,z,t)=F(~+x,,~-h,z+ZO-s,t)=O (20.18) 

where E = a/h. As a--+0 the surface F t6)=o contracts to a point and the fluid 
approaches a state of rest. Hence, as in Sect. 10a, it is allowable to expand @ 
and 17 in a perturbation series 

@ = 8 (p(l) + ~2@(2) + . * . ) 17 = ,yp + &p $ . . . . (20.19) 
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The boundary condition to be satisfied on the body, namely, 

grad F(&) + grad @ + J$ce) = o , 
becomes 

(20.20) 

gradF.grad@(1’+q+sgradFegrad@(2)+... =o, 
and Q(r) must satisfy 

gradF.grad@(r)+J$=o on F@)=o. 
Thus, one finds that, in this method of linearizing, the boundary condition to be 
satisfied on the body is the exact one 

gradFegrad@+I;=~ on F(x,y,z,t) =o. (20.21) 
The boundary condition satisfied by @on the free surface is, of course, the linearized 
one. The approximation to the exact solution is better, the deeper the relative 
submergence. 

The second method of linearization will be illustrated with the so-called thin- 
shi+ approximation. Let the equation of a ship hull be given in the form 

Z = &F&y). (20.22) 
in coordinates fixed in the ship. Let us write this in the form 

Z = f &F(l) (Z, 7) (20.23) 
where E is, say, the beam/length. Suppose the ship moves in direction OX with 
velocity c(t) and consider the family of flows generated by the motion of such 
bodies for different E. Let the velocity potential be @((x, y, x, t; E). Then, since 
as e-+0 the hull approaches a flat disc S,, the ship’s centerplane section, the 
motion of the fluid will also approach a state of rest and we may expand 

Q, = 6 @xl) + &2 @(‘a + . . . (20.24) 
and similarly for 17. The assumed forms for @ and “17 lead immediately as in Sect. lOa 
to the linearized free-surface boundary condition for G(l). The exact condition 
on the hull is 

F,(x--Jtc(t)a~,y)~~(x,y,F(x--StcdT,y),t)+~n3,-da-~(t)~=O. (20.25) 

After substituting (20.23) and (20.24) in (2O.25), one finds that Q(l) must satisfy 

@y’(x,y,f0,t) =fc(t)F,‘l)(x--c(t)dz,y), (20.26) 
Qic2) must satisfy 

@“‘(x, y, f 0, t) = f [F,cl) (x, y) @i” (x, y & 0, t) + Fy”’ @;’ - F(l) @‘a’], (20.27) 
and @ti) a relation of the form 

CD?’ (x, y, f o, t) = f Ci {F(l), @(I), . . . , cI+~)}, (20.28) 
where Ci is a functional of the functions in braces. We note especially that it is 
a consequence of the linearization that the boundary condition imposed by the 
presence of the body is to be satisfied on the centerplane section and not on the 
actual surface. One will expect this linearized theory to be more accurate the 
smaller e is, i.e., the smaller the beam-to-length ratio. 

It is clear that one may proceed similarly in the situations mentioned earlier. 
We record the results in several cases for reference. 

First consider the thin-wing a$$roximation for two-dimensional hydrofoils. 
In a coordinate system DXy fixed in the hydrofoil let the trailing edge of the hydro- 
foil be at (-a, -h), and let the upper and lower surfaces be given by 

y=-h+u(Z) and Y=-h+b(Z), -abZga, (20.29) 
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