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Hence Z(f) has singularities of the form 

1 1 
3 f-ncA’ 12=0,&l, 12 ,..., (33.13) 

along the real axis, and only these, so that it must have the form 

Z(f) =-+ot$+b, b = const . 

From (33.14) Z-tb-in/jcA as y-f--. Then from (33.11) 

Since 2 must be real for real f, it follows that 

a, = g 
and 

2 (f) = - $A- cot ;;. . 

It now follows from the definition of Z(f) that 

03.14) 

(33.15) 

(33.16) 

which yields, after integration, inversion of the logarithm and use of (33.6) to 
evaluate a multiplicative constant, 

(33.48) 

where b,= 1 and the b, are real. The branch of the root must be chosen so that 
its argument lies between & +n for y=O. From (33.18) one finds immediately 
also 

Aside from the first one, the coefficients in (33.18) or (33.19) are still to be 
determined. The constant-pressure condition for the surface profile is still 
available for this purpose, for we have made use of the Eq. (33.4) or (33.5) only 
through the value of the exponent. The value of the gravitation constant has 
not entered into (33.18) or (33.19). In fact, a comparison of (33.5) after differen- 
tiation and (33.18) in the neighborhood of f =O yields immediately 

(33.20) 

so that, once the b, or c, are determined, the relation between wavelength and 
velocity may be found. This method could presumably be pursued to obtain a 
sequence of further equations for determination of the b,. However, MICHELL 

Unknown
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734 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 33. 

proceeds somewhat differently. If we differentiate (~3.1) with respect to v, we 
may write the free surface condition as follows [cf. (32.54) and following]: 

03.21) 

Substitution of (33.19) in (33.21) yields an equation of the following form 

$7~ 2il -‘i SinA 5 A, cos s $ A, COS F+ . ..) 

= $gcsin&s B,cos~+B~cos T+...}, 
i 

(33.24 

where the B,‘s depend linearly upon the c,‘s, and the A,‘s depend upon them 
in a more complicated manner. The derivation of (33.22), especially of the right- 
hand part, and of the particular dependence of the An’s and B,‘s upon the c,‘s 
is rather tedious and we refer to either MICHELL’S original paper or preferably 
to HAVELOCK’S more general and systematic treatment. Equating coefficients 
of the individual cosine terms leads to a set of equations relating 3/g 2, cl, c2, . . . . 
The values as computed by HAVELOCK, which we assume to be somewhat more 
accurate than MICHELL’S own, are as follows: 

671 -=0.833 .2n, c,=o.o414, 3 c,=o.o114, c,=O.O042, c,=0.0014. (33.23) 

The value for gA/c2 should be compared with that for infinitesimal waves, namely 
27~. Substitution of &CA for f in (33.19) yields the velocity at a trough: 

u=c~Z[~-C~+C~-C~+...]R~~.~~~C. (33.24) 

From q2+2gq =O one may now find 7 for the trough and hence the amplitude- 
wavelength ratio : 

I I 2-1 -7 “- [I-cc,+c2- *.*I” wO.1418. 
1 jiga 

H. JEFFREYS (1951) has recently reexamined the basis of the Michell-Havelock 
method of approximation and concludes that an apparent discrepancy between 
the values in (33.23) and Eq. (33.20) does not really indicate a numerical error 
in the computations. 

We note in passing that MICHELL also gave the form of f’(z) analogous to 
(33.19) which must hold if a highest wave with corner exists in a fluid of finite 
depth. 

Met hod of NEKRASOV and YAMADA. This method makes use of the g-plane 
introduced in (32.57) and related to the f-plane by (32.58). We may again make 
use of Fig. 50 but must keep in mind that in the x-plane there is now a corner 
at 0 with an included angle of 120". Hence (32.59), the equation relating the 
z- and c-planes, must be replaced by 

dz a h (0 -==--- 
a 27ci r(l-[)R 

> h(C) =I+%5+a252+“’ 

and (32.60) by 

(33.27) 

See separate file errata.pdf
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Sect. 33. Waves of maximum amplitude. 735 

The coefficients a, are now to be determined by the constant-pressure con- 
dition on the free surface taken in the form (32.94). From 

and 
dz 
dy e=i 

(9333) 

3, h (eiY) -____ = - & (2 sin +y) 
276 (I _ eir)l 

-‘e--i(Ypn)/~~(e~Y) (33.29) 

one obtains as the equation analogous to (32.96) 

d (2 sin $y)# 
dy h (eir) h (e-ir) 

= 2$ (2 sin $.y)-sIm {emi (y--n)/6 h (eiY)} . (33.30) 

This yields a set of equations for determination of gA[c2, a,, a2, . . , . The actual 
computation appears to be as tedious as that of MICHELL’S method and, in fact, 
NEKRASOV’S (1920) computations do Y/A 
not seem to have yielded as accurate 
results as MICHELL’S. However, as G 

mentioned earlier, YAMADA (1957) 
has set up a systematic computation -R/ 
procedure and has obtained results 
in substantial agreement with those 
of MICHELL and HAVELOCK. Once -A? 
gill? and the a, have been deter- 

Fig. 51. 

mined, the surface profile can be found in parametric form by integrating 
(33.29) with respect to y from 0 to y. Fig. 51, reproduced from YAMADA’S cited 
paper, shows the form of the profile. 

p) Havelock’s approximation /OY gravity waves. In a paper already cited several 
times above HAVELOCK (1919) extended MICHELL’S method of construction of 
periodic waves of maximum amplitude, outlined in the preceding section, to 
one for construction of periodic waves of any allowable amplitude-length ratio. 
Up to the present, no one has proved the series involved to converge. However, 
as HAVELOCK points out, the method has attractive theoretical -features: the 
parameter describing the family of waves occurs in the form e-p tihere /3 varies 
from 0, corresponding to the highest wave, to 00, corresponding to infinitesimal 
waves. 

The method starts out exactly like MICHELL'S up to Eq. (33.19) except that 
it is not assumed that y =O corresponds to the free surface. We recall that in 
MICHELL'S analysis the constant-pressure condition did not enter completely 
until after (33.19), in particular, in (33.21). HAVELOCK assumes instead that 
this condition is to be satisfied on some other streamline, v =-a, which will 
then be taken to correspond to the free surface. The condition may still be written 
in the form (33.21) provided that one replaces v =0 by y =- CI. For y =-a 
one may write 

where yn= c, e -2nna/ca, the c, being the same as those in (33.19). HAVELOCK 
shows that one may express 81 f’j”/ap, in the following form 

sinh2 s $ sin2 3 1 -b 
X 

x A,cos~~-+A,cos~~+**. 
[ 1 

(33.32 
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7% JOHN V. WEHAUSF.N and EDMUND V. LAITONE: Surface Waves. Sect. 34. 

and Im f’ in the form 

Imf’=+cew4nDLi3C” sin JTf sinh2 .!?F + sin2 -!TF - ’ x 
I I 

x B 1 cos =- + B 
cl 3 cos -32? + 

(33.33) 
cl 

... . 
I 

Here the An’s are rather complicated expressions in the yn’s but also involve 
cash na/ciZ linearly; the B,,‘s are linear expressions in the yn with coefficients 
which are functions of e-2nalcl. HAVELOCK finds complete expressions for the 
B,‘s; for A,, A,, A,, A, he finds the dependence upon the first few yn’s. One 
must refer to the original for details, especially for the scheme for approximate 
solution for the yn’s. 

When CC =O the above analysis is precisely that for the highest wave. The 
numerical results of HAVELOCK’S computations for this case were given in the 
last section. He also computes g;1/c2, yi, y2 (also y3 for the first) for two further 
cases: e-2”aIC”=0.75 and 0.3. The agreement with results computed by other 
methods, either those of subsection 27~ or similar ones, is very close. However, 
to establish the validity of the method, one must prove convergence of the series 
4Yfll. 

The relation of this method of approximation to STOKES’ “second method” 
(see subsection 327) is also clarified by HAVELOCK. For this we refer to the 
original paper. 

34. Explicit solutions. Although it is not in general possible to give an explicit 
exact solution to a particular problem of interest, it is possible to give various 
classes of exact solutions and then to determine the associated solid boundaries. 
This is sometimes referred to as an “inverse method”. Several such methods 
for constructing exact solutions will be discussed in subsection 34~. In addition, 
there is one periodic wave in infinitely deep fluid which satisfies the boundary 
conditions exactly, the Gerstner wave. This will be discussed in subsection ~14/?. 
In subsection 34~ we shall discuss briefly what may be called pseudo-exact 
solutions due to DAVIES and PACKHAM. In these the exact boundary condition 
is replaced by a closely related one which allows exact solution. They derive their 
interest from the fact that they contain in one family waves ranging from the 
smallest amplitude-length ratio up to a counterpart of the Michell wave. Further- 
more, the procedure also can be used for pseudo solitary and cnoidal waves. 
Subsection 346 will be devoted to an exact solution for pure capillary waves 
recently discovered by CRAPPER (195 7). 

a) Imerse methods. SAUTREAUX’S method. Possibly the earliest method 
capable of generating a wide class of steady irrotational solutions is due to 
C. SAUTREAUX (1893, 1894, 1901). It has been rediscovered several times sub- 
sequently, e.g., by BLASIUS (1910), WILTON (1913), RICHARDSON (1920) and 
LEWY (1952). F. AIMOND (1929) has given a very comprehensive treatment of 
the method and of various related ones. The method may be easily generalized 
to include an arbitrary impressed pressure distribution on the free surface (see 
the papers of RICHARDSON or AIMOND). 

Let x =x +iy, f = v fiy, and take f as the independent variable. The free 
surface will be represented by v = 0. We further assume q2> E> 0. In the con- 
stant-pressure condition on the surface, Qq'J+gq = const, it will be convenient 
to take the position of the x-axis so that the constant is zero, and hence qj0. 
This condition may then be expressed in terms of z(f) as follows [cf. (32.56)]: 

x’(~)x’(~)[z(~)--x(pl)l=--ig. (34.1) 
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Sect. 34. Explicit solutions. 737 

Define 
p (f) = i i 12 (f) - iJ (f!] * (34.2) 

Then --p(v) == y(v), the y-coordinate of the free surface. Hence, from (34.1) 

From (34.2) and (34.3) one may now derive 

2 kPuP)l-l- 4/J2(V) =bw +eP)l”. (34.4) 

Elimination of F between (34.2) and (34.4) yields 

where 

But then, since z’ is an analytic function of f, at least near v = 0, 

and 
Z’(f) =-i~‘(f)+V(2g~)-l--‘2 (34.7) 

x(f) =-i~uf)+S~(2g~)-1--~2df. (34.8) 

One may now reverse the procedure, select an arbitrary analytic function p(f) 
satisfying (34.6) and construct the function x(f) by means of (34.8). The resulting 
function will describe a flow for which z(p) is the free surface. If (34.6) is satisfied 
only for some range of v, then for the remaining range one must treat the stream- 
line y =O as a solid boundary. 

One can use the preceding result to construct a flow if the form of the free 
surface is given. Let the surface be given in the form x = 6 (y) in a neighborhood 
of some point of the surface. Since y(p) =-,U (pl) on the surface, we may define 
c (4 =5’(y) = X’(d/Y’( d ; cr is an analytic function of p for real p as follows from 
the theorem of LEWY and GERBER cited near the beginning of subsection 32~. 
Hence, from (34.7), 

~(A4 = - [@g/P -P’“lwb)~ (34.9) 
Solving for I/,u’, one finds 

$=li’Zg,u(I +oq. (34.10) 

Since ,u is also an analytic function of ~1, the same relation holds for df/d,u when /A 
is complex, and consequently 

It follows similarly from (34.8) and (34.9), first for real ,u, then for complex ,M that 

z=-ip-$o(,u) d,u. (34.12) 

Eqs. (34.11) and (34.12) thus provide a relation between f and z determined by 
the form of cr.(p) for real ,LL. 

RUDZKI’S method. RUDZKI (1898) has given a different formula for deriving 
exact solutions. The derivation and statement of the formula below differ some- 
what from RUDZKI’S, but the result is equivalent. 

Handbuch der Physik, Bd. IX. 47 
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738 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 34. 

Let z =z (f) and write 

,$ = 1 ei8, 
P 4=4(PY)P fi=@(p>Y). (34.13) 

The free-surface condition may be expressed as follows, from (32.61) and the 
equation preceding it, 

p2$$=-gsinB for y =o. (34.14) 
Hence 

q= [-3gJsin6(v, 0) dp?]i for y=O, (34.15) 

where the branch of the cube root is taken which is real for real numbers. Com- 
bining (34.15) with (34.13) gives 

.z’(fp) =eis(qpo) [-3gJsin@(q, 0) apl]-k. (34.16) 

This relation must then hold also for y+o, i.e. 

z’(f) =eizsffao) [-3gJsin6(f, 0) do-“. (34.17) 

As in SAUTREAUX’S method, we may now reverse the above procedure, take 
S(f) as an arbitrary analytic function of f such that 6 is real for f real, and con- 
struct x’(f) from (34.17). 

RICHARDSON’S method. From (34.17) one can derive immediately a formula 
due to RICHARDSON (1920) for constructing exact solutions. Let G’(f) =-sin@(f). 
Then ei8=ll - Gt2- iG’ and (34.17) becomes 

(34.18) 

Again, inversely, if G(f) is any analytic function such that, for real f, G’, J/I - G’2 
and G are real, (34.18) gives a corresponding exact free-surface flow. 

Examples. The largest collections of specific flows &nstructed by one of 
the preceding methods are in the paper of RICHARDSON (1920) and a report of 
VITOUSEK (1954). Several examples are given below. 

1. In (34.17) let 6 (f) = const = a < 0. Further, take the constant of integration 
as zero even though this results in a singularity in x’ on the surface. One finds 
easily 

f =$1J-22gsina(zeWiM)t. (34.19) 

The free surface will consist of only the ray z =Y eia unless a = n/6. However, 
the ray z =Y ei@-BX) is also a streamline, but not one along which the pressure 
is constant unless a =-n/6. Hence it must be taken as a solid boundary in 
general. The special case dc =-S-C/~ is just the flow (33.4) considered earlier 
and has a corner. One may, of course, take any other streamline y =yo<O 
as another solid boundary representing a bottom. The pressure remains positive 
everywhere only if - ~@<a< 0. This special family of flows was discussed by 
WEINGARTEN (1904). 

2. If in (34.8) one takes p (f) = f/ c or in (34.18) takes G(f) =Q l/2g/c3 fl, where c 
is some fixed velocity, one finds 

c z’(f) = - i + 1JEflc3)-i_l. (34.20) 

This yields a flow of the sort shown in Fig. 52~, taken from RICHARDSON. The 
internal solid boundary represents some streamline y = yo<O. The free surface 
corresponds to the segment y = 0, 0 < q< c3/2g in the f-plane. 
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Sect. 34. Explicit solutions. 799 

3. Let c be some fixed velocity and let 

GO=~[B+:tanh[u-~~~-f)], B>I, CX<~, 

in (34.18). Then 

CZ’(/) =[B+tanh(c~s/)]-*{- ~~sech2(~~i)+/,/l-~asech4(~-$~j}. (~4.21) 

Fig. 52a-d. 

Here y = o corresponds to the free surface. The choice of the bottom stream- 
line is restricted by the necessity of avoiding having the singularity at B = 
tanh ictgcwsf within the fluid. Fig. 52a, also from RICHARDSON, shows a flow 
computed from (14.21) for B = 2, CC = * and c = 1. 

4. Flow over a corrugated bottom has been investigated by both RICHARDSON 
and RUDZKI by essentially the same method. Following RICHARDSON, we let 

Then 
G(f)=++-cos+f], B>I, u<i. 

cz’(f) =[B-cosc+f]-‘{- ia:sin+f+ kazcos2c+f . (34.22) 
> 

Fig. 52 b shows a flow computed from this formula for B ~2, CC =o.g. 
5. Flows similar to flows over a weir, under a sluice gate, through an opening, 

etc. have been considered by a number of the cited authors. SAUTREAUX (1901) 

47’ 
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740 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 34. 

applied his formula (34.8) with p = (c2/2g) e- 2~flc8 to obtain a number of different 
flows of this nature. Fig. 52d shows one of them. LAUCK (1925) has also con- 
structed such flows. RICHARDSON obtained a flow through an opening by select- 
ing 

G(f) = $ [B - egf/3cs] . 

Possibly the simplest such flow, studied by both BLASIUS and VITOUSEK, is 
obtained by taking ,u = m/i in (34.8) ; this yields 

(34.23) 

The flow is shown in Fig. 52e. 
FRITZ JOHN’S method. FRITZ JOHN (1953) has devised a method for con- 

structing exact irrotational two-dimensional free-surface flows which may be 
time-dependent. Let F(z, t) = @ +iY denote the complex velocity potential. 
The flow of particles on the free surface, y =r (x, t), will also be described in a 
Lagrangian system : 

z=e(u,t), (34.24) 

where c( is a real number associated with a particular particle. Then 

a.2 ae 
-~- =F’(x+if+,t),t), at at 

where F’ denotes the partial derivative with respect to z. The equations of 
motion (2.7), reduced to two dimensions and to motion along the free surface, 
give 

E~-+(g+E#$=-3& (3-1.26) 

Since rp = const on the surface, @/aa =0 and (34.26) states that a2z/at2+ig 
is perpendicular to ax/&x, or that 

e,,+ig=ir(a,t)e,, (34.27) 

where I (a, t) is a real function. Thus e (K, t) must satisfy the parabolic partial 
differential equation (34.27). 

If e (a, t) is a solution of (34.27) for some Y (ct, t) which is real for real a and if 
e and e, are analytic functions of u and real for real a, then one may construct 
the velocity potential F(z, t) for a free-boundary flow as follows. Actually, we 
shall construct F as a function of cc and t, i.e. we shall construct a function G 
related to F by G(a, t) = F (e(cc, t), t). F or real tc it follows from (34.25) that 

G,=F’$=e,(cc,t)e,(a,t)=e,(iT,t)e,(a,t). (34.28) 

One may now use the last expression in (34.28) to extend analytically G,, and 
hence G from real to complex Q’S. By inverting z = e (a, t), one may now construct 
F(.z, t) [invertibility follows from (2.4) which implies eccZa= I]. 

It is possible to prescribe 17 (x, t) and then construct the associated function 
Y(CC, t). For it follows from (34.26) with y =~(%(a, t), t) that 

$ +4& +%(~)2+2%t~ +Y,t+g] =o* (34.29) 
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Sect. 34. Explicit solutions. 741 

Any set of solutions X(N, t) depending upon a parameter a yieIds a function 
e(a, t) defined by 

e (a, t) = x (a, t) + i “/I (x (K 4, t) . 

The function r(ac, t) for real tc is given by 

(34.30) 

Y(U, t) = yig %t 
-=---> 

a Bx %a 
(34.31) 

where (34.29) has been used in obtaining the last expression. 
We shall suppose now that the motion is steady and make the following 

special choice of Lagrangian parameter a. Select some fixed point z,, of the sur- 
face y =q (x) and for any particle on the surface let --tc be the time at which 
the particle was at z,,. Since the motion is steady, all particles take the same 
amount of time to travel from z,, to any given point z and hence 

e(a,t)=e(O,t+cc)-e(t+a). 

It then follows from (34.27) that also 

(34.32) 

r(u,t)=y(u+t). (34.33) 
Hence (34.22) becomes an ordinary differential equation in a single variable, say 
z=t+a: 

e”(z)-ir(z)e’(-c)+ig=O. (34.34) 
It follows next from (34.28) that G (a, t) = G (E + t) and thus, if e (r) is an analytic 
solution of (34.34), real for real 7, 

G’(t) = m e’(z). (34.3 5) 

In this case each choice of a function Y(Z), real for real -c, results in a function 
e(z) as a solution of (34.34), and then in a function G(z) obtained by a quadrature 
of (34.35). One may invert z =e (a + t) and find F as a function of z as in the 
last paragraph or else regard 

z= e(z), F= G(z) (34.36) 
as parametric equations with complex parameter z. 

Several examples are considered by JOHN, two of which are time-dependent. 
A simple and interesting steady flow is obtained by taking r(z)=v, a constant, 
in (34.34). Then (34.34) and (34,35), after setting the constants of integration 
equal to zero, yield 

z=$t+AeiY7, F= f+vaAa)t--2+lcosvt-. 
( (34.38) 

The free surface, obtained by taking z real in the first formula, is a trochoidal 
curve without self-intersections if A <g/v2; the wavelength is il = 2nglv2 and the 
amplitude is A. If A <g/v2, then 1 dF/dz I> 0 and A[il< 1/2n. However, dF/dz 
can become infinite if dz/dz = 0. Such points occur at 

z= a++ n+i& 
( 1 ( 

I-log&). 

In order to avoid having them within the fluid, the bottom must be chosen as 
a streamline which passes above or through these points. Fig. 53, taken from 
JOHN’S paper, shows several profiles and the associated streamlines through 
the branch points (34.39) computed for various values of the constant A when 
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742 JOHN V. WEHAUSEN and EDMUND V.LAITONE: Surface Waves. Sect. 34. 

il = 23t (this is equivalent to graphing 2nz/iZ for various values of 2nA/l). The 
surface profile and bottom come closer together as A -+ 1 and draw further apart 
as A -to. For A = 0.9 they are so close that they cannot be conveniently separated 
in the figure; in such cases one may, of course have reservations about the applic- 
ability of the perfect-fluid model. 

The surface profile in this example is exactly the same as in the Gerstner wave 
treated in the next section. However, the Gerstner wave is defined for infinite 
depth and is not irrotational. The flow described above may also be obtained 
by SAUTREAUX'S method. VITOUSEK (1954) has studied it by this procedure. 

LO- 
/“\ 

--m-_-e--- 
-M - 

Methods of VILLAT and PONCIN. At the end of Sect. 32~ brief mention 
was made of a pair of integral equations derived by VILLAT (1915) for the deter- 
mination of flows over some given bottom profile and with the top profile also 
given upstream of some point. The method seems to be chiefly useful as an inverse 
method in which the free surface is given and the other profiles sought. VILLAT 
has worked out one case, but not in complete detail, where the top cover is 
missing and the bottom has a declivity. 

PONCIN (1932) has further elaborated VILLAT'S method in the direction of 
starting with the fixed profile and finding the free profile. Actually, he does 
not really achieve this. Instead, he is able to construct a flow for a fixed profile 
of the same general behavior as the given one, but not identical with it. The 
method is applied to a number of interesting special cases, including flow over 
wavy bottoms and over bottoms with a declivity. The solutions are generally 
for large values of the velocity. The method and results do not lend themselves 
to a brief summary. 

j3) Gersher’s wave. GERSTNER'S wave (1802) is apparently the first flow to 
have been discovered which satisfies exactly the condition of constant pressure 
on the surface, and is, in fact, one of the earliest papers on water-wave theory. 
It was subsequently rediscovered by RANKINE (1863). As will be shown below, 
the motion is not irrotational. This fact itself would not be enough to rule it 
out as a mathematical model for real periodic waves. However, the direction 
of the vorticity is such that it is difficult to conceive of a scheme whereby such a 
wave could be generated in nature. 

The motion is most easily described in Lagrangian coordinates. Each particle 
is associated with a pair of parameters (a, b), bs0. However, (a, b) does not re- 
present a particular position of the particle at some time t,, but instead a mean 
position. Hence, instead of (2.3) and (2.4) we need require instead only that the 
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determinant D of those formulas be independent of t. The motion is described 
by the equations 

x=a+Ae”*sin(ma+at), y=b-Aee”bcos(ma+ot). (34.40) 

If b =O is taken as the free surface, the motion evidently represents a wave 
moving to the left with velocity c =o/m, while the particles themselves describe 
in a counter-clockwise direction circular paths about the points (a, b) associated 
with the particles. The surface b = 0 is a trochoid and, in fact, each curve b = 
const < o is also a trochoid. In order that there shall be no self-intersections, 
one must have 

AS&+. 04.41) 

In order to verify that the motion is kinematically possible, it is necessary to 
show, as noted above, only that the Jacobian 8(x, y)/a(a, b) is independent of t. 
An easy computation shows 

a(% Y) - =1--mZAZe--2mb, 
a (4 b) (34.42) 

so that the continuity condition is satisfied. Next one must show that the pressure 
is constant along the free surface. We shall, in fact, show more, namely, that it 
is constant along any line b =const <O, provided oZ=gm. To see this, introduce 
the Eq. (34.40) into the first of Eqs. (2.7). A straightforward computation yields 

A(gm-8)embsin(ma+ot) =-fg. (34.43) 

If the pressure is constant along the surface, then afi/aa =O. This can only hold if 

a2=gm. (34.44) 

However, if $=gm, then a$jaa = 0 for all b, so that each curve b = const is an iso- 
baric curve. Although we shall verify this fact directly, it now follows immediately 
from BURNSIDE’S theorem in subsection 328 that the motion cannot be irrotational. 
A direct computation of the vorticity vector is facilitated by noting that 

u=.$- =Aaemb cos(ma+ot) =-o(y-b), 

ay v=~ =Aoe mbsin(ma+at) =0(x--a). 
(34.45) 

Hence 
au au _--.- 
ax ay 

=(J. 2-!E-E 
( i ax ay * (34.46) 

The right-hand side of (34.46) may be computed from (34.40) by application 
of the rules of inversion for partial derivatives. The final result is 

au a24 mwSA2ezmb ---=-----. 
ax ay .j - ,2A2e2mb ’ 04.47) 

the negative sign indicates that the vorticity is directed oppositely to the orbital 
motion of the particles. The relatively strong vorticity of Gerstner waves when 
mA is not quite small has been pointed out by TRUESDELL (1%3), who measures 
it with a dimensionless vorticity number (see Sect, 27 of SERRIN’S article in 
Vol. VIII/I). 
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We shall omit a discussion of the construction of the curves b = const, stream- 
lines in a coordinate system moving with the waves; it may be found in LAMB 
($932, 9 251), MILNE-THOMSON (1956, $14.81) and in KOCHIN, KIBEL and ROZE 
(1948, Chap. 8, 3 16) together with reproductions of GERSTNER’S original curves. 
It is, however, of interest to note that there is, according to (34.41), a “highest” 
wave of ratio 2 A/ii = 1/z =0.318, a figure which may be compared with the value 
0.142 for MICHELL’S wave. The highest Gerstner wave has a cusp at the crests, 
a further indication that the motion cannot be irrotational. 

The pressure distribution may be found by substituting (34.40) in the second 
equation of (2.7), using [34.44.), and integrating. The result is 

~=Po-egb--ee2A(1-e2”b). (34.48) 

A computation of the potential and kinetic energies over a wave length yields 

Finally, we note that nowhere in the preceding analysis have we made use 
of homogeneity of the fluid, i.e. the Gerstner wave also represents an exact solu- 
tion for an arbitrary heterogeneous fluid (with Q constant along streamlines). 
Moreover, DUBREIL- JACOTIN (193 5) has shown that the Gerstner wave is unique 
in this respect. 

GERSTNER’S wave is defined only for infinite depth. One may ask if a similar 
wave exists for finite depth. “Similar”, in this context, will be taken to mean 
a periodic wave which satisfies exactly the constant-pressure condition on the 
free surface and for which the particle orbits are closed. DUBREIL-JACOTIN 
(1934) has proved the existence of such a wave and showed that it is unique when 
the period is fixed. However, this motion cannot be given explicitly except in 
the case of infinite depth. Methods of approximate computation of the wave 
have been given by KRAVTCHENKO and DAUBERT (1957) and GOUYON (1958). 

y) Pseudo-exact solutions. Although the solutions of this section are not really 
solutions satisfying the exact boundary conditions formulated earlier, they are 
exact solutions to a closely related problem, also with a nonlinear boundary 
condition. Their interest derives from the fact that it is possible to encompass 
within one explicit formula waves of all amplitudes up to a highest wave ana- 
logous to &tICHELL’S wave. The procedure also allows explicit construction 
of solita.ry a.nd cnoidal waves. It is possibly a misnomer to call these solutions 
pseudo-exact, for one may also interpret them as the first term in a certain 
series solution of the correctly posed problem. In this sense they are analogous 
1 o HAVELOCK’s approximation procedure described in subsection 33 B. The work 
to be described has appeared in a series of papers by DAVIES (1951, 1952), PACK- 
HAM (1952) and GOODY and DAVIES (1957). 

The motion will be described in terms of the variables introduced in (32.85), 
w =6 +i t. The alteration in the boundary condition consists in replacing 
(‘32.89) by 

~fj=1$e-3*sin3@ for y~=o, 

where r! is some fixed const.ant chosen so that 1 sin g6 is a good approximation 
to sin 6. If one wishes to consider (34..50) as the first term in a series approxima- 
tion to (32.89), one may expand sin 8 in a series in sin 36 and express (32.89) as 

(34.51) 

See separate file errata.pdf
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In this case (34.50) with 1 =g represents the approximation obtained by keeping 
only the first term of (34.51). However, we shall not pursue the approximation 
procedure and refer to DAVIES (1951) f or further information, It will be con- 
venient to reformulate the boundary condition (34.50) as follows: 

Im ++Z-$eiaW>=O 
1 

for y=O, 

or, after introducing the new variable x(f) =e--i3W=eP/c3, as 

Im{+(i$+~Z$)}=O for y=O. 

(34.52) 

In order to proceed further, we must further specify the nature of the wave 
motion. Let us suppose the motion to be periodic with wavelength 1 and take 
the fluid to be infinitely deep. We again introduce the c-plane of (32.91) and 
take coordinates as in Fig. 50. The expression in curly brackets in (34.53) is a 
regular analytic function of [ inside the unit disc of the c-plane with vanishing 
imaginary part on the boundary, hence is a constant. Since, for 5 =0 (i.e. as 
v --+- co), x = 1 and dX/d f = 0, the constant must be 3 1 glc3. Thus x must satisfy 
the differential equation 

i~-)l~~~=--)l$. (34.54) 

The solution is easily found to be 

x = .I +A e--i2Jgf/c’ (34.55) 

Referring to Fig. 50, we see that, if f = 0, x =q$c3, where q,, is the absolute 
velocity at a crest. Hence 

A+. 04.56) 

Since 6 must also vanish at CJJ =&icl, i.e. the left-hand side of (34.55) must be 
real, we must also have (3 lg/cs) *CA = z, or 

~2=3lgi1/23t. (34.57) 

Note that if I= Q, the relation between c2 and ;1 is the same as in the infinitesimal- 
wave theory. The solution (34.55) may now be put into the following form: 

where o~q,,~c. If qO=c, then ze, =c and the flow is uniform. If q,,=O, then 

~3=~3[4-e-~3~f/~~], (34.59) 

and near f =o, fcil, &2c;l, . . . there is a corner in the wave profile with the 
two tangents making the same angle 120“ as in STOKES’ theorem [near f =O, 
(33.5) gives ws=i +gf, (34.58) gives w3=i 3Zgf]. Hence this wave corresponds 
to MICHELL’S highest periodic wave. The ratio of amplitude to length of this 
wave may be computed from the following expression for the trough: 
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By expanding in a series and integrating term by term, one finds 

Sect. 34. 

m;m=0.127. (34.60) 

We recall that the value for MICHELL’S wave was 0.142. 
If the depth of fluid is finite, one must add the additional boundary condition, 

Im {xl= 0 for w =- Q, as well as for p =0 and f gnc if the motion is to be 
periodic. The determination of x now becomes too difficult to carry through 
briefly. However, an explicit solution is still possible and has been worked out 
by DAVIES (1952) and further investigated by GOODY and DAVIES (1957). 
Similarly, a “ solitary wave ” can be explicitly constructed which satisfies the 
boundary conditions Im {x} =O for y =- Q and for q =o, o>yz - Q and 
x-fl as ~--+&co. This has been clone by PACKHAM (1952). Either of these 
problems leads to the following differential-difference equation for x(f) : 

xtf:w [~~(f+iQ)--9z$i]+~(~l~~) [x'(f-iQ)+V$-i]=o; (34.61) 

it may be established in a manner similar to that used in deriving (22.30) or 
(32.80). 

8) Pure capillary waves. The first investigation of periodic progressive capillary 
waves satisfying the exact boundary condition is apparently clue to N. A. SLBZKIN 
(193 7). He formulated the boundary-value problem in the same manner as will 
be done below, reduced it to solution of a nonlinear integral equation analogous 
to NEKRASOV’S and proved existence and uniqueness of a solution. However, 
he apparently did not observe that an explicit solution was possible for infinite 
depth of fluid. This was discovered by CRAPPER (19577, following a different and, 
in fact, more elementary method. 

We shall consider the motion as a steady one in which the fluid moves to 
the right with velocity c as y --+--- co. f(z) = v + iy will 

The existence of a complex velocity potential 
b e assumed and the free surface y =v(x) will be taken to 

correspond to the streamline y = 0 as usual. It will also be convenient to make 
use of the variable co =6 + i z introduced in (32.85). 
then from BERNOULLI’S integral 

If P, is atmospheric pressure, 

P+*~q2=Po+~,c2 (34.62) 

(we recall that gravity is being neglected). The dynamical condition at the free 
surface [see (3.8) and (3.9)] is 

Before combining (34.62) and (34.63), we recall that the curvature of a stream- 
line at any of its points is given by d6/ds where s is arc length along the stream- 
line. Hence, we may combine (34.62) and (34.63) to obtain the following boundary 
condition 

~-e(C2-22)=T~=T~~=T~4~ for y=o, (34.64 

or 

=-f$ for y=O. (34.65) 
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Since q=c2 and since @/a~ = arjay from the Cauchy-Riemann equations, 
(34.65) may be written 

The problem is now to find a function o(f) analytic for y2 0, such that co+-0 
as y--+- 00 and such that the imaginary part -c satisfies (34.66). However, since 
the boundary condition (34.66) involves only -c, unlike its analogue (32.89) for 
pure gravity waves, it is possible to solve first for the harmonic function z(p, y) 
and then to find 6 later. 

We assume that a solution can be found which satisfies 

at - =--Jz(y)sinhr, 
ay 

h (0) = y ) 

and proceed to verify the assumption. Integrating (34.67), we obtain 

logtanhaz=-H(y) +G(v), (34.681 

where H’(y) = k (y) and G (v) is an arbitrary function, or 

(34.69) 

Since z is a harmonic function of p and y, LAPLACE’S equation must be satisfied 
by (34.69). This yields an equation to be satisfied by X and Y in which the two 
variables can be separated. We shall not repeat the detailed analysis, which is 
typical of that occurring in separation-of-variables problems, The final result is 
that X and Y must satisfy 

Xf2=a,+a,X2+a3X4, 

Y’2=-al-a2Yz-a3Y4,} (34.70) 

where ai, as, a, are arbitrary constants. CRAPPER states that the full equations 
may be used to construct a solution for fluid of finite depth, but that it is suffi- 
cient to set a,=0 for infinite depth (in view of SL~~ZKIN'S result, this is presumably 
also necessary). Since z is real, we shall also take X and Y to be real. If one does 
set a,=0 and assumes a,<O, a,>O, the following give real solutions of (34.70) : 

X(y) =e - cash (Ia2 y + E) , 

where E and F are real constants. A glance at (34.69) shows that -r is independent 
of the choice of a,. It will be convenient to let az=m2/c2, where m> 0. One may 
determine E from (34.67), for 

or 

ec - =H’(O) =&logXJ,=, =:tanhE T 

e2E - - m T/e c2 +I ~ B-2 
m T/Q 9 - I 

Since E is to be real, we must evidently have 

(34.73) 
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Since F adds only a real constant to ‘p we may select it at our convenience; we 
take F= 0. Substitution of (34.71) into (34.69) gives 

z = log cash Cm Y/C + El + ~0s (m ~44 
cash (my/c + E) - cos (m q//c) 

= log cos (i 112 y/c + i E) + cos (m v/c) 
cos (i m v/c + i E) - cos (m v/c) 

=log[cot~(mf/c+iE)cot~(m~/c-iE)]. 

(34.74) 

The analytic function u), which has z as imaginary part and which approaches 
zero as ly-f- 00, is given by 

o=ilog[-cot2$(mf/c+iE)]. (34.75) 
We then have 

~_ = c e-io - df 
dz ---ccoP, (mf/c+iE)=ccoth+imf/+E). (34.76) 

From this one may solve for z in terms of f: 

cs=f-gtana $+iE 
( 

+const 

= f - i $ &,FET + const 

=f-is *+~‘ei*t,c +ig, 

(94.77) 

where the constant has been chosen so as to make cz reduce to f when B =o. 
It is evident that 

z(f +y =2(f) +$, 

so that the streamlines are periodic in the x-direction with wavelength il= 2ym. 
The surface streamline is obtained by setting v =O. After separation of 

real and imaginary parts in (34.77) the equation for the surface becomes: 

.=-E-4 B sin m rp/c 
C m 1+B2f2Bcosmq/c,lc 

y=!& I+ Bcosmcplc 
m t$B2+ 2Bcosmq/c ’ I 

(34.78) 

with v serving as a parameter. There is a crest when CJJ = 0 and a trough when 
q=nc/m. Th e 1 d’ff erence in the values of y yields the following expression for 
the ratio of total amplitude to wavelength: 

a 4 B -=- 
a n ?Z’ (34.79) 

Eq. (34.72) then provides a relation between AliZ and mT[ec2, which we may 
write, for example, as 
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If this formula is compared with (27.29), it should be kept in mind that a is here 
the total amplitude and that in (27.29) A is a length associated with the half 
amplitude. The formulas are consistent. 

As a/A increases, the surface profile becomes steeper and steeper near the 
troughs until the two sides finally touch. This occurs for a/1 =0.730. A wave 
of these proportions may be considered as a “highest” capillary wave, an ana- 
logue of MICHELL'S wave, although the nature of the limitation is different. 
Fig. 54, reproduced from CRAPPER'S paper, shows the profile of this wave together 
with other streamlines. It is a consequence of the form of the dependence in 
(34.77) that the other streamlines -in 
Fig. 54 may also serve as surface profiles 
for different values of a/J, i.e. for different 
values of 23. It is not surprising, of course, 
that the profiles are similar to the middle 
three of Fig. 3 5. 

35. Existence theorems. In the various 
applications of the approximate theories 
of Chapt. D and E it is tacitly assumed 
that there is an exact solution which is 
being approximated. Without knowledge 
of conditions for existence and uniqueness 
of a solution to a particular problem, the 
status of an approximate solution is some- 

Fig. 54. 

what anomalous and one must rely upon comparison with experimental results 
for conviction concerning the correctness of the solution. However, such 
comparison is not a satisfactory criterion, for in the original formulation of 
a problem one will usually have already made a decision about the mathe- 
matical model of a fluid which will be used. Thus, if one has assumed a perfect 
fluid (as we usually have) and then made a further mathematical approximation 
in solving the problem at hand, the validity of this approximate solution must 
first be established before comparison of the predicted results with experimental 
measurements can be used as a criterion of the applicability of the fluid model. 
Without this additional knowledge, the comparison of approximate solutions 
with experimental results must be considered in some sense to be second best, 
even though valuable evidence may be provided by good agreement in a wide 
variety of situations. 

Unfortunately, existence and uniqueness proofs in exact water-wave theory 
have generally been difficult to establish, and have usually been obtained for only 
rather restricted, although physically important, situations. Many of them 
are very recent and some rely upon methods of functional or topological analysis 
which cannot be briefly expounded. Although some proofs are so constructed 
that approximation methods are inherent in them, others are only able to assert 
the existence of a solution with no indication of how to obtain it approximately. 
Proofs are still lacking for many relatively simple but important problems, for 
example, MICHELL'S highest wave and standing water waves. 

No attempt will be made to give an exposition of the mathematical methods 
which have been used in establishing the various existing theorems. Instead only 
a discursive account will be given of the nature and limitations of the known 
theorems. 

cz) Irrotatioaal waves-infinite de@%. Proof of the existence of periodic waves 
of permanent type in infinitely deep water was first given by NEKRASOV (1921, 
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1922) in a journal of very restricted distribution. Shortly thereafter LEVI-CIVITA 
(1925) gave another proof along quite independent lines. Further proofs were 
given by NEUMANN (1929) and by LICHTENSTEIN (1931), these being more closely 
related to NEKRASOV’S. A new treatment of LEVI-CIVITA’S proof, due to LITT- 
MAN and NIRENBERG, is contained in STOKER’S Water waves (1957, 3 12.2). Also, 
NEKRASOV (1951) has recently published his researches in a more accessible form. 

NEKRASOV'S method requires proving that there exists a solution 6(y) to his 
nonlinear integral equation (32.104). His procedure, in brief, is to assume an 
expansion of 8 (y) in powers of the parameter ,LL’=~ - 3 > 0, 

G(y) =p’% +g2a2 +..*> (35.1) 
then to derive equations relating each & to ones of lower index, and finally to 
show that the series converges. p =3 is chosen as a starting point because it 
is the first eigenvalue of the “linearized” equation (32.104), i.e. the one obtained 
by replacing the quotient containing sin 8 by simply ~6 (B). This corresponds 
to the infinitesimal-wave theory. Proof of convergence requires that ,u’ be suf- 
ficiently small, and positive, but no estimate of radius of convergence is obtained. 
On the other hand, the method does allow computation of explicit approximate 
formulas for quantities of interest. 

LEVI-CIVITA also works with the variable w, treating it as a function of the 
variable [ introduced in (32.90). Hence his formulation of the problem is essen- 
tially the same as NEXRASOV'S, i.e. he is seeking a function CD([), regular in the 
disc [cl < 1, vanishing at { = 0 and satisfying (32.97) on 151 = 1 and some further 
condition assuring that 1 w/c - ii<,!?< 1. His procedure for finding such a func- 
tion is to expand both LC) and k= 1 --A/2n c2 in a power series in a parameter 
p>O: 

k =k k,,u”“, 
n=l 

05.2) 

where the functions o,(C) and the constants k, are to be determined by the bound- 
ary conditions. The first terms, col=- ;[, k,= 0, correspond to infinitesimal 
waves, so that the parameter ,u is essentially the amplitude/wavelength of this 
approximation. LEVI-CIVITA establishes the convergence of the series (3 5.2) 
for sufficiently small values of ,L No estimate of a radius of convergence is given, 
but HUNT (1953) has stated that an examination and refinement of LEVI-CIVITA'S 
inequalities show that convergence is established for amplitude-wavelength 
ratios up to -&. The procedure lends itself to explicit computation of higher- 
order computations, and, in fact, he carries them out through 12 = 5. LEVI- 
CIVITA further derives the interesting theorem that irrotational waves of per- 
manent type must be symmetric about vertical lines through crest and trough. 
NEKRASOV assumed this at the outset. 

NEUMANN and LICHTEN~TEIN (the latter’s approach is simpler) derive a coupled 
pair of nonlinear integral equations and put them into a form such that SCHMIDT'S 
theory of nonlinear integral equations is applicable. Iterative methods of solu- 
tion can be used to obtain approximate formulas. 

/3) Irrotational waves-horizontal bottom. When the fluid is infinitely deep 
and the motion periodic, the only independent dimensionless parameter besides 
the amplitude-wavelength ratio is c2/gjl. When the fluid is bounded below by 
a horizontal plane at mean depth lz, then a new parameter, say c2/gJz, must enter 
into any solution. However, other independent sets of parameters may be used, 
and, in particular, different choices of a perturbation parameter have led earlier 
to different approximate solutions for finite depth. Thus, in Sects. 14p and 27 
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one finds the first and higher approximations for periodic waves of permanent 
type when A/n is taken as a perturbation parameter, whereas in Sect. 31 one finds 
approximations to two further types of waves of permanent type, one of them 
periodic, corresponding to a different choice of parameter and a different method 
of approximation. In each of these cases there arises the question as to whether 
there exist waves of permanent type satisfying the exact boundary conditions 
for which these waves may be considered approximations. In each case the 
answer is affirmative. 

Waves of small amplitude. The first proof of the existence of periodic 
progressive waves in fluid of finite depth is due to STRUIK (1926). His method 
of analysis is similar to LEVI-CIVITA’S for infinite depth. Existence of the desired 
wave is established for each value of G/g/z< 1 and for each sufficiently small value 
of A/L, where the bound on A/I depends upon c2/gJz. HUNT (1951) has recently 
corrected some errors in the proof which did not invalidate it but which resulted 
in incorrect approximate formulas. 

NEKRASOV (1928, 195 I) was also able to show that his integral equation 
for 6, as modified for finite depth [see (32.104) and (32.106)], had a solution, 
thus pr,oviding an independent proof. As was the case for infinite depth, NEKRA- 
sov assumes that the waves are symmetric about verticals through trough and 
crest; S,TRUIK proves this. KRASNOSELSKII (1956) has recently applied topological 
methods of analysis to NEKRASOV’S equation and established not only existence 
of solutions for ,u in the neighborhood of the eigenvalues of the linearized equa- 
tion, but also their uniqueness and continuous dependence upon j,~. 

Solitary and cnoidal waves. LAVRENT’EV (1943, 1947) was the first one 
to establish the existence of cnoidal and solitary waves. Cnoidal waves are not 
mentioned by him by name, but, in fact, their existence for sufficiently large 
wavelength is established along with that of the solitary wave, the latter being 
obtained as a limiting case. The detailed exposition of the results (1947) is un- 
fortunately both difficult of access and difficult to read, and relies upon earlier 
theorems of the author. Although the perturbation parameter appears at first 
glance to be taken as e2=- 1 +gh3/Q2, which for the solitary wave would be 
in contradiction with (32.52), the quantity h is not really mean depth but a 
related quantity which varies with the wavelength of the approximating periodic 
wave. FRIEDRICHS and HYERS (1954) by a completely different procedure have 
established the existence of the solitary wave. Their perturbation parameter is 
essentially e2= 1 - gh3/Q2 [actually it is as= -i log (ghs/Q2)]. The point of 
departure is again the boundary condition (32.89) for the function w. However, 
an integral equation is formulated, then altered by a change of variable @ =aq, 
++G=v+Y. The d’ff I erent rates of stretching correspond to those of subsection 108. 

’ (Something like this also occurs in LAVRENT’EV’S proof, but is disguised in his 
theorems on conformal mapping of narrow strip-like regions.) An iterative proce- 
dure is used to prove existence of a solution for sufficiently small values of 82. 

LITTMAN (1957) has used a method somewhat similar to that of FRIEDRICKS 
and HYERS to establish the existence of cnoidal waves satisfying the exact 
boundary conditions. However, as a parameter he has used essentially ,%/A, 
where h is the mean depth and 1 the wavelength. It is demonstrated that solu- 
tions exist for values of c2/gh which are both greater and less than 1. Fig. 5 5, 
modified slightly from one in LITTMAN’S paper, shows in a qualitative fashion 
the relation between the dimensionless parameters. The dotted lines enclose 
values of the parameters, again in a purely qualitative way, for which solutions 
have been demonstrated to exist. (Here h is the modulus of the elliptic functions 
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2, 
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and K is the complete elliptic integral of the first kind. k serves as a parameter 
in certain approximate formulas.) 

Fig. 55 was prepared by first computing the curves shown by means of both 
the cnoidal-wave theory and the theory of higher-order infinitesimal waves as 
developed in subsection 271~. [SKJELBREIA’S tables (1959) facilitated the com- 
putation for the latter method.] Curves were then faired by eye in such a way 
as to pass smoothly from one set to the other. Hence, although they are claimed 
to be only qualitative, they have in fact a quantitative basis. An additional error 
has been introduced by taking the curves k2= const as straight lines; they should, 
in fact, show some curvature as the radial distance from G/g/z = 1, A/F, =O 
increases. This additional complication of the computation did not seem necessary 
for the purpose at hand. 

.Although it is not strictly relevant to the material of the present section, it 
seems of interest to display the two sets of curves mentioned above, for they 
indicate in a rough way the ranges of validity of the two fundamental methods 
of approximation and show how they fit together. They are shown in Fig. 56. 
One expects the curves based on the infinitesimal-wave theory to be accurate 
near the horizontal axis, A/h =0, those based on cnoidal-wave theory to be 
accurate near c2/gk = 1, and the two to agree where these two regions overlap. 
The curves confirm this expected behavior. Computations based on the second- 
order cnoidal-wave theory of Eqs. (31.37) may be expected to produce better 
agreement over a wider range. 

y) Irrotatiofial waves-other colzfigurations. Flow over a wavy bottom. 
In connection with the study of inverse methods in subsection 34~ an explicit 
example of a steady flow over a wave-shaped bottom was exhibited. However, 
there the surface profile was given and the bottom profile calculated. The direct 
problem, in which the bottom profile and other flow data are given, has also 
been considered by several persons. LAURENT’EV (1943) announced theorems 
concerning this problem, but did not include them in his later (1947) exposition. 
GERBER (1959 has given a comprehensive treatment of the “supercritical” 
case and has announced further results for the “subcritical” case (1956). Let the 
bottom profile S be periodic and symmetric about vertical lines through the 
maxima and minima; let 6 (s) be its intrinsic equation where s is arc length meas- 
ured from a maximum and 6 is the angle between the tangent and the x-direction. 
Let Q be the discharge rate for the fluid, and let q0 be the velocity at a crest. 
In the first paper he considers flows in which the slope of the surface has the 
same sign as that of the bottom (we recall the two possible flows occurring in 
the linearized theory of subsection 20a). GERBER shows that there exists at 
least one solution of this type provided the following inequalities are satisfied 
in the interval between a maximum and the first minimum to the right: 

(35.3) 

where e1 and e2 are arbitrary small but positive quantities. If certain other 
inequalities, further limiting g Q/q:, are satisfied, he is also able to prove unique- 
ness provided 6 (s) $0. In the second paper he announces that there exists at 
least one solution such that the profile has slope of opposite sign to that of the 
bottom if 

g>(l+e)q (35.4) 
Handbuch der Physik, Bd. IX. 48 
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and QILoqo and @VQ are small enough; here L, is the arclength from a maxi- 
mum to a minimum of S and d is the vertical distance. GERBER’S methods are 
topological (Schauder-Leray theory) and do not yield effective methods of 
approximation. 

MOISEEV (1957) has also considered this problem. By a modification of the 
method used to derive NEKRASOV’S integral equation (32.104), he derives a pair 
of nonlinear integral equations to which the Lyapunov-Schmidt method is applic- 
able. Let c be the average velocity defined by (7.5) for an allowable value of y 
(thus pl increases by CA over a wavelength), and let Q be the discharge rate. 
Then MOISEEV finds that there exists a sequence of velocities c,> c,>. . . >0 
associated with the eigenvalues of a certain linear operator, such that, if c + clz, 
there exists a unique flow provided the slope of the bottom is sufficiently small. 
Also,if c>c, or c~,+~<c<c~,, then the solution is such that the slopes of bottom 
and surface are of the same sign; if cgn< CC c~~+~, the slopes are of opposite sign. 

Flow over a bottom with a declivity. Let the flow be from left to right 
and suppose the bottom profile to be asymptotic to horizontal lines as x+& co, 
the one on the right being lower than that on the left. The discharge rate Q 
and velocity c at X=-CO should then be sufficient to determine the flow. The 
existence of a steady flow under these circumstances has been investigated by 
HAIMOVICI (1935) and GERBER (195 5). The former derives a pair of nonlinear 
integral equations, similar to NEKRASOV’S, relating 6 and t of (32.86). An iterative 
method is used to prove the existence of a solution. GERBER makes use again 
of the Schauder-Leray theory. The theorems established by each are very simi- 
lar, but GERBER’S is sharper. Let the bottom be given intrinsically by S(s), 
measured from some fixed point. Then a solution exists if 

+<I, max l@(s)1 +$ -c I,\ 
l@(s)1 SA emalsl, A, a>O. J 

(35.5) 

The last condition assures a rapid approach to the horizontal asymptotes. The 
case of subcritical flow does not appear to have been treated in the published 
literature. 

Motion past a submerged vortex. TER-KRIKOROV (1958) has recently 
investigated steady flow past a submerged vortex of intensity I in a channel 
of depth h when the exact boundary conditions on the free surface are retained. 
If c is the velocity far upstream of the vortex, he proves existence and uniqueness 
of the flow provided that c2/g12>1 and r/c/z is sufficiently small. 

Interfacial waves. In subsection 14s we considered the linearized theory 
of waves at an interface between two perfect fluids of different densities, bounded 
above and below by horizontal planes. The question naturally arises as to whether 
one can establish the existence of such waves .when the exact boundary conditions 
at the interface are observed. KOCHIN (1927) extended the methods of LEVI- 
CIVITA and STRUIK to this problem and established the existence of (necessarily 
symmetric) interfacial waves of finite amplitude. 

6) Rotatiolzal waves. The explicit construction in subsection 348 of a periodic 
wave of permanent type which is rotational and the demonstrated existence of 
irrotational waves of this type which are of finite, if small, amplitude raises the 
question as to whether each of these waves is a special case of a more general type. 
This question has been discussed in a notable paper by DUBREIL- JACOTIN (1934) 
with results which include and generalize those of LEVI-CIVITA and STRUIK. 
We give a only a bare indication of the results. 

48* 
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Let us suppose that a coordinate system has been chosen so that we may 
treat the wave motion as a steady flow to the right. Although we do not assume 
the motion to be irrotational, there will still exist a stream function y ((x, y) by 
virtue of the continuity equation. The vorticity of the flow will be given by 
-A y, and since by a classical theorem the vorticity is constant along a stream- 
line, the following equation must be satisfied by y: 

AY =fW, 05.6) 

where f(y) is some unspecified function. The condition on the free surface 
y=O may still b e d erived from the special Bernoulli theorem [see Eq. (2.10")] 

gr(x)+g[y~+y~l=const. 05.7) 

For irrotational waves the function f= 0; for GERSTNER'S wave it is given by 
(34.47) after setting b =y, o =cm. The question which DUBREIL- JACOTIN asked 
is whether a wave of finite amplitude exists for any distribution of vorticity 
f(y). In order to encompass both of the known finite waves into her results, 
she limits f to functions ,of the following sort: 

f(Y) =-Pi m2 $mhV/QF(emhdQ), -QSySo, 05.8) 

where Q is discharge rate, lz the mean depth, and the function F(Q) is bounded 
and satisfies a Hijlder condition in e; k is a small parameter. If the depth is 
infinite, one must replace Q/h by c, the velocity at y =- 00 (it is assumed that 
yy+c as y+- co). 

DUBREIL- JACOTIN'S theorem is as follows. For any m =2x/1, h and f(y) 
satisfying (35.8) there exists a 6> 0 such that for p”< 6 there exists a unique 
corresponding progressive wave of permanent type with vorticity distribution 
f(y). The waves are also shown to be symmetric about vertical lines through 
crest or trough. She also demonstrates that among this class of waves for finite 
depth there is a unique analogue of the Gerstner wave, in the sense that the tra- 
jectories of individual particles are all closed. This wave has recently been 
investigated by KRAVTCHENKO and DAUBERT (1957). The development of means 
of calculating rotational waves has been the subject of a recent investigation by 
GOUYON (1958). 

8) Waves ilz heterogeneous fluids--internal waves. It has been shown in sub- 
section 328 that irrotational waves of permanent type are not possible in a 
heterogeneous fluid, but that GERSTNER'S rotational wave still provides a solution 
forinfinitedepth. DUBREIL-JACOTIN (1935) h as shown that this is the only periodic 
wave of permanent type in infinitely deep fluid having this property. In a 
later paper (193 7) she returned to this topic and made use of the methods developed 
by her for rotational waves to investigate the existence theory for the two problems 
described below. The first problem, a natural generalization of one investigated 
by KOCHIN and mentioned at the end of subsection 35 y, is the existence of 
periodic internal waves of permanent type in a heterogeneous fluid bounded 
both above and below by horizontal planes. In the second problem the upper 
surface is free. 

The two problems may be formulated as follows. First we recall that in a 
steady flow of a heterogeneous fluid the density must be constant along stream- 
lines. Hence, if y is the stream function, we may write e = e (y). The equation 
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analogous to (35.6) is now somewhat more complicated. It may be derived from 
(32.54) as follows. Apply the operators 

to the two equations of (‘j2.54), respectively, and subtract. This yields 

Since e = e (y), 

and hence 
ak2’-%-tY) =o 

w Y) 

or, integrating and substituting [ = - A y, 

where f, (y) is an arbitrary function. This is the equation which y must satisfy. 
If y = 0 is the top streamline and y = - Q the bottom streamline, then the bound- 
ary conditions are. 

p=O for y=O, y=-Q for y=--h (35.40) 

for the first problem, and 

yz+y$+2gy=const for y=O, 

y=- Q for y =-h. 
(35.11) 

for the second problem [cf. (32.60)]. The function e(y) cannot be considered as 
an arbitrary given function in the same sense that fi(y) is arbitrary; it must be 
related to the density distribution when the fluid is at rest. DUBREIL-JACOTIN 
assumes that e (y) is the same as the density at the mean level of the streamline y 
when the fluid is at rest. 

In order to obtain results analogous to those of subsection 35 6, certain 
restrictions are placed upon the function f,(y) and the density distribution. 
Both problems are then reducible to integro-differential equations. In general 
there is no nontrivial solution. However, under certain conditions there are an 
infinite number of values of the parameter Jg/27cc2 in the neighborhood of which 
there exist nontrivial symmetric waves of finite (but small) amplitude. 

[) Waves with surface tension. It has already been mentioned in subsection 3 4 6 
that SL~ZKIN (1935 b, 1937) had derived an integral equation for the motion of 
pure capillary waves and had proved both existence and uniqueness of solution 
under certain circumstances. The explicit solution for this problem derived by 
CRAPPER supersedes in a sense these earlier results. 

SEKERZH-ZENKOVICH (1956) has formulated the exact boundary-value 
problem for combined gravity and capillary waves in terms of the function co 
of (32.86) and announced that a proof of existence for sufficiently small amplitude- 
to-wavelength ratio can be carried out by LEVI-CIVITA’S method for pure gravity 
waves. 
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