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so that (28.1) is linearized to 

(1 ~$)~z,+p;,,+<y!!d!‘. +yLo, (29.3) 

c2=gh(x,z). (29.4) 

In agreement with the previous discussion, (29.3) corresponds to the linearized 
gas dynamics equation only if the bottom is flat and horizontal, i.e. if h is constant. 

The second method of linearization corresponds to the classical tidal-wave 
theory, or long-wave theory [see, e.g., LAMB (1932, p. 254) or Eqs. (10.36)] and 
can be obtained by writing 

u(x, z, t) = @z’,<< 1, “(x,&t) =@z<l, (29.5) 

r(%%t)<h(%4, (29.6) 

so that (28.1) is linearized to 

(29.7) 

Again, as before, (29.7) corresponds to the linearized gas dynamic case, or the 
simple acoustic wave-propagation equation, only if the bottom is flat and hori- 
zontal. In this case the general solution of (29.7) for one-dimensional flow is 
the well known d’Alembert solution of the simple wave equation, 

@(x,t) =F(x-ct) +f(x+ct) c=J/gh=const, (29.8) 

which is used to study long-wave-length oscillations in canals when the water 
is either at rest or moving with a velocity U<<c. The limitation to small per- 
turbations and constant k for one-dimensional flow allows (28.1) to be linearized 
to 

%=ut= -gqx, 
1 1 

TX.% = gh-%t = ,,?Itt; 1 
(29.9) 

various applications of this, including the canal theory of tides, are given in 
LAMB (1932, pp. 254-273) and DEFANT (1957). 

For the case of a canal having a non-rectangular but constant cross-section, 
we may generalize (29.9) by defining the mean depth t% as the undisturbed cross- 
sectional area S divided by the width b of the canal at the undisturbed free water 
surface [see LAMB (1932), p. 2561. When the canal has a variable depth /z(x) 
and the disturbance may be considered one-dimensional, then (29.7) may be 
written in terms of the varying cross-sectional area S(X) for constant width b 
as follows 

-$c&, = -k (kcDz), = $ (S@Jx, S(x) = b/z(x), b = const. (29.10) 

Then from (29.9) we obtain 

+(wz=+ltt~ (29.11) 

which is the same as the expression derived by GREEN (1838) for a canal that is 
varying in both width b and depth h so that 

S(x) =/5(x) b(x). 

Unknown
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670 JOHNV.WEHAUSEN and EDMUNDV.LAITONE: Surface Waves. Sect. 29. 

However, the exact linearized first order approximation is (29.7), and the form 
of this equation indicates that large values of b’(x) would invalidate the one- 
dimensional assumption, especially if R, is relatively large. This is also indicated 
by LAMB (1932, p. 274). However, (29.7) provides the rigorous proof that (29.10) 
is applicable to one-dimensional, long-wavelength, small-amplitude disturbances 
in a canal of rectangular cross-section having a constant width and a varying 
depth. 

If we now limit our analysis to long wave lengths having a simple harmonic 
oscillation of frequency oj27c, so that we may write 

q(x,t) =v(X)sin(ot+4, @(x,t) =,(X)COS(ut$-r), 

Eqs. (29.10) and (29.11) reduce to 

(29.12) 

If we solve these equations in order to determine the harmonic oscillations in 
long canals with various special choices of varying cross-section, boundary con- 
ditions at the ends of the canal or finiteness conditions may further limit the 
allowable values of the frequency to a sequence of eigenvalues or fundamental 
frequencies, a,, 02, . . . . Associated with each oi there is an yli and cZ+. The general 
solution of the Eqs. (29.12) is then a superposition of these characteristic solu- 
tions, 

17 (x, t) = z 4~~ (x) sin (0% t + 4, @(x, t) = E A, ~)n (4 cos (0, t + 7,) , 

where A, and z, are arbitrary. Emphasis, however, is usually upon finding the 
fundamental mode uO, v0 and the first few higher modes. We consider two special 
problems in order to illustrate the procedure. Other more complex situations 
are analyzed in LAMB (1932, p. 275ff.) or in DEFANT (1957). 

Let the canal be of rectangular cross-section with h = h,, b =/3x. We shall 
suppose it to be bounded at the ends by vertical walls at x = x,> 0, x = x,>x,. 
The Eq. (29.12) for v now becomes 

BESSEL’S equation of order zero. The general solution is of the form 

c J,, (0. $4 + D y, (0 44 > cZ=gh. 

The boundary conditions at the ends, $‘(xl) =$‘(xz) =O, can be satisfied only if 

Jl (0 %iC) x (0 %iC) - .A(@ x*/c) % (a x,/c) = 0. 

This equation determines the eigenvalues o,, CS~, . . . . The various modes of 
motion are then of the form 

@fi = A,, Kb,, xz/c) Job 44 - .A@, 44 Yo (~Wlcos bw t + GA > 
1 

c29 13j 
?%=‘1,2,.... . 

If x1 = 0, the solution Y, must be excluded because of its singularity at the origin 
and the eigenvalues are determined simply from 1, (ofixz/c) = 0, s = 1, 2, . . . . 

A solvable case in which F, is variable is the canal of rectangular cross-section 
with b = b,, and 

h(x) =h,(l -;;j. 
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Sect. 29. The linearized shallow-water theory. 671 

Eq. (29.12) now becomes 

the equation for the spherical harmonics P, (X/L), Q, (x/L) with (aL)2/gh,, =v (v + 1). 
The condition that the solution should be finite on Ix 15 L requires one to discard 
Q, and further restricts v to integers, thus determining the fundamental fre- 
quencies : 

+~?&+I,. 

The fundamental solutions are then formed with Legendre polynomials: 

cp, = A, P, (x/L) cos (a* t + zn) . (29.15) 

Motions of the type considered above may be identified with the long period 
oscillations called seiches which occur in certain lakes or canals throughout 
the world. Many applications are presented by CHRYSTAL (1905, 1906) and the 
periods observed in several lochs and lakes seem to correspond to those calculated 
by the linear shallow-water theory. The linear shallow-water equation (29.7) 
should be very suitable for the study of seiches because of their long period and 
relatively small amplitude. Usually the complete Eq. (29.7) must be solved numer- 
ically by the method of finite differences because the contour of the body of 
water is quite irregular and the depth variation is important. 

When the motion cannot be considered one-dimensional, one must use the 
complete two-dimensional equations (29.7). If the motion is harmonic with 
frequency o/2n, so that 

11 (x, 2, t) = 7 (x, 4 sin (0 t + r) , @(x,&t) =,(X,Z)COS(c7t++), 

then the right-hand side of (29.7) is replaced by - (02/gh)@. However, just as 
in the one-dimensional case, the allowable values of o may be restricted by the 
boundary conditions or finiteness conditions to a sequence of eigenvalues or, 

with associated functions qr, qn, . . ., @r, $, . . . , The general solution is 
$ain’ a superposition. We illustrate with several typical examples, but refer 
again to LAMB (1932, p. 282ff.) or DEFANT (1957) for a more comprehensive 
treatment. 

Consider first a rectangular basin of constant depth F, bounded by x = 0, 
X=X(), z=o, z=z 0’ Then (29.7) becomes 

and the boundary conditions are 

@i (0, z, 4 = @$ (x0 I 2, t) = c&(x, 0, t) = cDz((x, 20, t) = 0. 

It is easy to verify that the fundamental solutions are 

(29.16) 

where the eigenvalues o,, are given by 
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672 JOHNV.WEHAUSEN and EDMUNDV.LAITONE: Surface Waves. Sect. 29. 

The result should be compared with (23.14) which reduces to this when m,h is 
small enough so that tanh m,lzr m,h. 

As another example consider a basin of circular planform of radius a and 
depth h. In polar coordinates, x =r cos 6, y =Y sin 6, Eq. (29.7) becomes 

and @must satisfy @,. (a, 6, t) = 0. The fundamental solutions are easily found by 
separation of variables to be 

@mn=&, Lh, r/c) cos (a8 + LJ ax (%zmnt + Gttn) 9 c2=gk, (29.17) 

where the fundamental frequencies o,, are the roots of 

J,‘hn u/c) = 0, m=I,Z,.... 

The solution (23.15) again reduces to this if tanh m,,k~~@. 
If the planform is ring-shaped with the rings having radii a and b < a, then 

one needs also the solution Y, in order to satisfy the boundary condition on 
Y= b. (The singularity of Y, at the origin obviously causes no difficulty, for it 
is not in the fluid). The fundamental solutions now become 

where the fundamental frequencies CT,,% are determined from the equation 

(29.19) 

As before, the solution (23.16) reduces to this one for small m&. 
As a final example of two-dimensional seiches we consider the long-period 

simple harmonic oscillation in a shallow circular basin with depth variation 
depending only on r. Then, in polar coordinates (29.7) becomes 

(29.20) 

If the depth variation is parabolic, 

h(r) =ql-;), 

LAMB (1932, p. 291) has shown that the fundamental solutions are given by 

@,,m= A,,(;)ncos (~6 + 4,,) F (a> 1, y;;) ~0s hm t + %m) > (29.21) 

where F is the hypergeometric series 

F(x$,y;:) =I’ +z(c)2+ aF.‘2.;,“,‘“+:,” (~~+.~x 
and 

a=m+%, p-1--12, y=m+l. 

The fundamental frequencies own are determined from 

~2% a2 
g ho 

= 2m (2% - 1) + 4% (92 - I). 
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Sect. 29. The linearized shallow-water theory. 673 

Both nz and n must be integers in the above formulas. They simplify in an 
obvious fashion for the symmetric mode m = 0. 

It has been pointed out above in connection with several of the examples 
that the results obtained by analyzing the problem by means of the infinitesimal- 
wave approximation reduce to those obtained by the linearized shallow-water 
approximation if mh =2rr h/A is small enough so that tanh llz hg m h. One 
should note that this holds also for the velocity of propagation of a periodic wave : 

The remainder O(h/A)z confirms the appropriateness of the term “long-wave 
approximation” sometimes applied to the shallow-water theory. 

This exact agreement of the linearized results in the limiting case is encourag- 
ing justification for both the shallow-water approximation and the infinitesimal- 
‘wave approximation since they originate not only from different physical con- 
siderations, but also by entirely different types of mathematical approximation, 
as discussed in Sect. 10. The shallow-water approximation leads to hyperbolic 
type nonlinear equations, while the infinitesimal-wave approximation deals with 
linear elliptic equations. STOKER (1947, p. 32) gives a detailed comparison of 
the two linearized approximations for the case of wave motion over a flat 
bottom at a 6” slope. 

a) Linearized shallow-water theory ajq%?ied to two-dimensional steady flow. The 
first method of linearizing the shallow-water theory, as given by (29.3), is applic- 
able to the determination of the variation in water depth for the steady flow in 
a shallow open channel or river. However, in practically all cases (29.3) must 
be solved numerically, so that it does not entail a prohibitive amount of extra 
labor to solve directly the more exact original nonlinear first-order equations (28.1) 
using the methods discussed in the next section (30) on nonlinear first-order theory. 
As a matter of fact, for supercritical flow, defined by U>lgh, the method of 
characteristics is very easy to use in the numerical solution for a nearly horizontal 
open channel having a flat bottom and varying width, as shown in Sect. 30. 
The subcritical case, having a flow velocity everywhere less than lgh, can be 
satisfactorily approximated by the one-dimensional hydraulic theory which as- 
sumes that the velocity at each cross-section S(x) is independent of y and x. 
This method would yield, of course, a constant depth over a given cross-section 
and would therefore not be satisfactory for predicting the rise in water level 
about an island, or a jetty, or a pile in a swiftly moving relatively wide stream. 
For this particular application the linearized form of (29.3) is very useful, especially 
for subcritical flow, i.e. for lP/gh< 1. 

We now consider the application of (29.3) to the problem of determining the 
water depth variation about a two-dimensional cylinder that is perpendicular 
to’the bottom and has a narrow cross-section parallel. to the flow as shown in 
Fig. 37. If the bottom is approximately flat and horizontal everywhere near 
the vertical cylinder, then we may consider h as constant and,‘providing that 
U2/gh< 1, write (29.3) as 

P2~~x+~8~=0 or $+$g =o, 

P2=1--F2=1 1$=const>o. 
(29.23) 

Handbuch der Physik, Bd. IX. 
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674 JOHN V. WEHAUSEN and EPMUND V. LAITONE: Surface Waves. Sect. 29. 

The fundamental solution of (29.23), in view of (29.1), for two-dimensional pro- 
files which may be considered symmetrical about the z-axis as shown in Fig. 37, is 

(29.24) 

Fig. 37. Shallow-water flow about a two-dimensional symmetrical cylinder perpendicular to the flat horizontal bottom. 

The boundary condition for the two-dimensional shape (see Fig. 37) is 

(29.25) 

where the same linearization procedure has been applied to the boundary condition 
as was used in deriving (29.3). Therefore (29.24) may also be similarly linearized 
by writing 

u% = plg(x,zo) =& 
L f(5) (g) 

s 
*-5 

1+ ~ 

Hence if we let v =p, then for .z,z ; 
( 1 

2 * 

“’ 

so that the linearized form of (29.24) is 

u (X? 4 u I+” U’ 
L O 

I 
w(x.4 ZB -=- 

u 2-6 s 

2; (5) dE 

(x-&2+(/92)2 =s I 
0 

k (29.27) 
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Sect. 29. The lipearized shallow-water theory. 675 

On the actual surface of the two-dimensional profile (29.27) may be further 
linearized to 

On the other hand, for large values of x we may write 
L 

M lx. 4 
u - -,j;,&(E) dt. (29.29) 

0 

The change r (x, z) in the original constant water depth k can then be determined 
by the linearized relations corresponding to (29.1) and (29.2) as 

F&, d;‘) 1 o(;)‘=-F”!?$ +(+?i&!?), (29.30) 

where for any (x, x) we obtain vz and y* from (29.27). For example, on the surface 
of the two-dimensional profile (z=zo), (29.30) reduces to 

(29.31) 

where yZ and va are both of 0 (A$. 
These relations are, of course, completely restricted to flows that are every- 

where subcritical since (29.23) shows that the Froude number (F = U/]l$z) must 
be everywhere less than unity to keep ,J>O. The effect of increasing Froude 
number is to increase Al%, and therefore decrease “17, since 0 decreases. It is seen 
that this effect increases as z increases, the greatest effect being on CJI~X”~/,~P 
in the limiting case of very large values of z as shown in (29.29). This relation, 
or preferably (29.27), could be used to predict the additional change in V(X, Z) 
due to a finite stream width by using the increment of 9% from one mirror image 
to represent the first approximation to the channel boundary wall as indicated 
in Fig. 37. For slender cylinders in a narrow channel the “one-dimensional” 
approximation of Sect. 307 is generally used, this allows an approximation for 
frictional head loss which becomes relatively more important as the channel 
width decreases. 

For supercritical flow (F = U/Is> 1), (29.23) must be written as 

B2 sx - vea =O or :;-=-?f- 
a(h)2 ’ I 

Bz=F2-1=~--1 =const>O. 
(29.32) 

Now, however, (29.32) cannot provide a satisfactory approximation of the change 
in water depth at some distance from the two-dimensional profile since its general 
solution is 

y(x,z) =G(x--4 +g(x+Bz), (29.33) 

which predicts no change, even upon approaching infinity, along the lines of 
constant slope dz/dx = f i/B = f [F2 - 11-h. Consequently the nonlinear method 

43* 
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676 JOHN V. WEWAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 30. 

of characteristics, which will be described in Sect. 30, must be used in predicting 
the depth variation at any finite distance from the profile. Although the method 
of characteristics will directly and easily give the velocity distribution or depth 
variation on the profile itself, we will also derive the variation on the profile 
surface according to the linearized theory. The result will be of crucial importance 
in evaluating the validity of the nonlinear first-order shallow-water theory 
(28.1), since any great discrepancy between the linearized result and the nonlinear 
results from (28.1) would indicate that the perturbations involved are sufficiently 
large that the second-order shallow-water theory of Sect. 31 must be introduced. 

The linearized solution of (29.32) for any sharp-nosed slender two-dimensional 
profile, as in Fig. 37, is obtained from the general solution (29.33) and the follow- 
ing linearized boundary condition : 

%(X. 20) _ z;(x) = 7 - -~Gy(x-BB& x=z,>o. 

Therefore G'(x - Bz,) = - UZ; (x)/B, so that on the profile surface, z =z,, (x), 

zc(~,z,)=C+~,=U+G’(x-Bzo)=U/I-~, 

‘I 
(29.34) 

TN (x, zo) = ux; (x) . 

Then the variation in water depth on the profile surface is given by (29.30) as 

for flow that is everywhere supercritical, i.e. B2 =F2 - I> 0. 
It should be noted that (29.23) and (29.32) are identical to the linearized 

potential equations for two-dimensional steady subsonic flow and supersonic 
flow, respectively, if we simply replace the Froude number (F = U/j/$) by the 
Mach number (M = U/c) [see (2&j)]. This is in complete accord with the state- 
ment that the hydraulic analogy is valid for the flow over a flat horizontal bottom 
(i.e., the flow is equivalent to the two-dimensional isentropic flow of a fictitous 
perfect gas having a specific heat ratio y =2). Consequently, Eqs. (29.24) through 
(29.29) are identical to these for subsonic flow about slender two-dimensional 
profiles in free air or in a wind tunnel of rectangular cross-section as derived by 
LAITONE (1946). These equations confirm the known result that the linearized 
equations are independent of the value of the specific heat ratio y. Similarly, 
Eq. (29.34) is identical to the well-known linearized two-dimensional supersonic- 
flow solution if we let F2 - I= B2=M2- I> 0. 

Although these linearized results are very satisfactory for slender sharp- 
nosed profiles, they only apply for Froude numbers that are not too,near unity, 
that is they are not applicable to flows near the critical velocity U= j/gh = c, 
equivalent to sonic flow. For these cases we must return to the nonlinear equa- 
tion (28.1), as discussed in Sect. 30. 

30. Nonlinear shallow-water theory. This section will primarily discuss methods 
for obtaining solutions of the nonlinear equations (28.1) which provide the first- 
order approximation of the shallow-water theory. The special cases to be con- 
sidered are the one-dimensional unsteady flow and the two-dimensional steady 
flow in open channels. This will provide a basis for discussing the one-dimensional 
assumption of open-channel flow. Finally the hydraulic jumps, and their relation 
to the first-order shallow-water theory, will be discussed. 
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u) O-ne-d&e&onal noa-steady, first-order, shallow-water theory. By assuming 
one-dimensional flow in the x direction only, the nonlinear equations (28.1) 
reduce to 

~,+~%+g(“il+h))x=gJkzx, 

(17 + h), + [uh + WI% = h, = 0. i 
(30.1) 

Again it should be noted that these are equivalent to the gas dynamic equations, 
upon introducing (28.3), only if the bottom is flat and horizontal, i.e. h%=O. 

Now, if we let 

C2(% t) =S[17(% 4 + h(X)], 

2cc,=g(r7+%> 2cc,=g(17+4,, 1 
(30.2) 

and give the initial conditions as du/da and d c/da along a curve in the (x, t)- 
plane defined by x(a), t(m), then we may write (30.1) as 

~~,+u,+2cc,+O=ghzi,, 

Cz4,+O+2uc&.+2ct=0, 

x,u,+t,%+O+O=~, (30.3) 

dc 
0+0.+%.c,+t&=~, 

This set of four equations can be solved uniquely for ulu, uz, cz, ct in terms of 
U, c, hx and the initial conditions as long as the determinant of the coefficients 
in (30.3) does not vanish. This condition is violated along the characteristic 
curves x(a), t(a) defined by 

which may be easily expanded by the minors of the bottom row to give 

A$ - 224 x, t, + (u” -‘c”) t; = [xa - (24 - c) t,] [xa- (u + c) t,] = 0. 

Therefore the characteristic curves, C, and C-, are defined by 

=u(x,t)&c(x,t). 

(30.4) 

(30.5) 

Since hz is given, and appears only on the right-hand side of the first equation 
in (30.3, therefore the characteristic curves as defined in (30.5) are identical to 
those in the gas-dynamics case [see, e.g., COURANT and FRIEDRICHS (1948)]. 
However, the Riemann invariants, or quantities that can be constant along a 
characteristic curve, now depend upon the bottom slope, as may be seen by 
adding the two equations in (30.1) after introducing (30.2) so as to obtain 

(u+~c),+ k-i- 4 @+2c),= [$ + &Cc) ~][~(-Q) +2c(%t)] =ghz. (30.6) 

These give the same Riemann invariants as in the isentropic one-dimensional 
unsteady gas flow with a specific heat ratio y =2 only if hz =0 [see, e.g., 
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COURANT and FRIEDRICHS (1948, p. 87)]. No simple Riemann invariant involving 
only zt and c is possible if hX varies with x ; however, if t& is constant, so that g F, = 
m =const, then (30.6) may be written 

Similarly, by subtracting the two equations in (30.1), we obtain 

[-g+(U-C)~.][u-22C-mt] =o. 

(30.7) 

Consequently, the basic statements relating the characteristic curves and Riemann 
invariants of Eq. (30.1) with g& =m =const may be summarized as follows: 

24+2c-9nmt=R(x,t) =const alongacurvec, , 

definedby$=u+c; 

u-2c-wzt=-S((x,t) =const alongacurvec- 

definedby$=u-c. 

00.9) 

Fig. 38 shows typical sets of curves in the (x, t)-plane. The above equations show 
that in any given region in the (x, t)-plane there are three basic types of solutions, 
namely : 

(I) the constant steady state in which zt and c remain constant everywhere 
in the region, so that all characteristics form straight lines; 

(2) the general flow in which neither R nor S is constant in a finite region; 
(3) the special case of a simple wave over a flat horizontal bottom (m =o) 

wherein a constant steady-state region is separated from a varying region by 
a straight characteristic line along which either R or S is constant. 

The first type of solution obviously has R and S constant throughout the region 
only if the bottom is flat and horizontal (m =O). The second type of solution 
is complicated and can best be obtained by the method of finite differences 
[see, e.g., STOKER (1957, pp. 293-joo)]. The third type of solution will now 
be discussed since it has considerable physical significance for many problems 
concerning the propagation of a disturbance into water that is originally at 
constant depth and constant velocity, and extends an unlimited distance for 
x>o. 

When a disturbance moves into still water at constant depth over a flat hori- 
zontal bottom (m = 0), then it is obvious that (dx/dt)o = c (co) is the character- 
istic, now a straight line, which must continually separate the steady-state 
region from the disturbance region in the (x, t)-plane, as indicated inFig. 38. 
This characteristic curve must be a straight line since there is a constant steady 
state always ahead of it so that (&v/at),, = const and therefore x,, = c (co) t. Also, 
either R or S must be constant along the characteristic, and since R, corresponds 
to CO, or (dx/dt), =c(oo) >o, as in Fig. 38, therefore R, = 2c( CQ) =const. This 
type of simple wave, having (dx/dt), = c (co) > 0 and R, = 2c (co) = const., is 
called a forward-facing wave since the particle paths enter from the side with 
greater values of x, as in Fig. 38. The value of 3 varies as one passes from one 
to another C, characteristic inside the region of the disturbance since u and c 
both vary due to the disturbance and none of the C, characteristic lines can ever 
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intersect CO,. However, every C- characteristic intersects Co,, as shown in Fig. 38, 
and since S remains constant on any given C- characteristic curve, therefore S 
is evervwhere constant since every C.. characteristic must have the same value 
S(x, t)~=R,=2c(oo) =const on 6:. 

Fig. 38. Simple forward-facing waves, S = comt. 

The same considerations are true even if the water of constant depth into 
which the disturbance is being propagated is flowing with a constant velocity 
ti ( W) < c (co). The only change is that now the following are constant : 

ax 
t-1 dt 0 

=z4(oo)+c(oo)>o, Ro=2c(c4+u(4 

on CO, only, while on all C-, 

zc(~,t) -u(x,t) =S(x,t) =2c(co) -~(00) =const. 

Similarly all R in the disturbance region vary as 

as indicated in Fig. 38 for the simple forward-facing (CO,) wave. As shown in 
Fig. 39 a simple backward-facing (C!,) occurs if R = const and S = 2 c - U. These 
waves are called simple waves because all the characteristics of the family for 
which the Riemann invariant takes on a different constant for each line form 
straight lines. For example, referring to Fig. 38, the forward-facing waves 
(dx/dt>o) have S(x, t) constant everywhere and R(x, t) varying so that the C, 
characteristics form straight lines. On the other hand, in Fig. 39 the backward- 
facing wave (dx/dt<o) has R (x, t) constant everywhere and S (x, t) varying, 
so that now only the C- characteristics form straight lines. The characteristics 
of one family only must form straight lines in a simple wave because only one 
of the Riemann invariants (S or R) is constant in the entire region of the disturb- 
ance. For example, in the case of the forward-facing simple wave in Fig. 38, 
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we have S constant in the region of the disturbance. Therefore from (30.9) 
and Fig. 38 we may write, 

Compfess/on waves 

Pig. 39. Simple backward-facing waves, R = const. 

Consequently, ui = ua, c1 = cQ, u2 = ug , c2 = c4, and ui+ us, cl+ c2, z&= u4, c& c4, 
so that 

ax 
0 at c- =u,-cc,*u,-cc,+const, (C- curved), 

ax 
0 at cp, 

=uUI+~1=z4s+cs=const, (CO, straight), 

dx 

0 dt c, =uUZ+c2=u4+c4=const, (C, straight), 

It is important to note that these simple waves can exist only over a flat hori- 
zontal bottom, i.e. when m = O. 

We have now shown how the method of characteristics for one-dimensional 
unsteady flow has resulted in the concept of the simple wave which quickly 
gives a numerical evaluation of the propagation of a one-dimensional disturbance 
into water of constant depth moving at constant speed. The solution of this 
problem in the (x, t)-plane can be obtained by direct application of (30.9). For 
example, the usual case of a forward-facing wave having S everywhere constant, 
and straight C, characteristic lines, as shown in Fig. 38, has the slope of the C, 
straight lines determined directly by the time history of the disturbance at x = 0, 
and Eqs. (30.2) and (30.9) which show that 

= ~(0, t) + ~(0, t) = const = ~(0, t) + Vg[F, + ye (0, t)] . (30.10) 

Along any given C, straight line having this constant slope 

R(x, t)c+= ~(0, t) + 2c(o, t) = const = 24 (0, t) + 2 ‘l/g [12 -+- 7 (0, t)] . (30.4 I) 
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Consequently, the values of u and c are determined in the entire region shown 
in Fig. 38 by the given values on the t-axis. The curved C- characteristics need 
not be calculated, since the desired numerical solution is independent of them. 
Their existence, however, can lead to a simplification in the numerical calculation 
of (30.10) since, in the case shown in Fig. 38, each curved C- characteristic extends 
from the CO, characteristic to the t-axis, and on each and every C- characteristic, 
-s=u(co)-2c(co) = const. Therefore, at every point on the t-axis that can 
be reached by a C- characteristic we must have 

S=2c(0,t)-z4(O,t)=2c(oo)-24(~)=2]lgF,-~((oa)=const. (30.12) 

Of course the C- characteristics can continue from CO, to the t-axis only if 
(dx/dt)c-=u-cc<, or u<c, so that in this case (30.10) may be simplified to 

=u (0, t) + c (0, t) = const 

=@(o, t) - *[u(m) - 2c(oo)] =$t(o, t) -&4(w) +1Jp (30.13) 

=3c(O,t)+[~(~)--2c(~)]=3~g[h+r(O,tll+u(~)-2~gh. 

Consequently, the problem is solved in the region so defined if either u (0, t) or 
c (0, t) is alone given. The surface elevation is given by (30.2) as 

h+q(x, t) = y, c2(a) F,=-= const 
g 

in every case of disturbance propagations into a constant water depth over a 
flat horizontal bottom (m = 0). 

Many other physical problems can be simulated by giving the data along a 
prescribed curve in the (x, t)-plane for ~50; e.g., see STOKER (1957) where the 
disturbance created by the breaking of a dam, and the effect of moving a vertical 
end plate in a tank of still water of rectangular cross-section, u(m) = 0, are con- 
sidered. Since the bottom is flat and horizontal (m =O), all of the equations 
following (30.9) are equivalent to the gas-dynamics equations with a specific 
heat ratio y = 2. Consequently, the problems solved in COURANT and FRIEDRICHS 
(1948) for channels of finite length which produce wave reflections at either end 
are also applicable. In this hydraulic analogy to compressible flow it is important 
to remember that (30.13) is only applicable to subcritical flow, which is equivalent 
to subsonic gas flow, since we must have (dx/dt)c- = 21 - c< 0, oru (ca) < c (co) = 
ji$i When th e fl ow is supercritical, so that u (co) > c ( W) = VgIz, corresponding 
to supersonic gas flow, then the slopes of both the C, and C- characteristics are 
positive. Consequently the two families can meet in a cusp, and the C- character- 
istics cannot intersect both the t-axis and the undisturbed steady supercritical 
state that lies at, and to the right of, Ct. Therefore, in order to apply (30.13) 
for supercritical flow, the region of the constant value of S, as given by (30.12), 
must be very carefully defined. 

Another limitation on all the preceding equations is indicated for the com- 
pression wave depicted in Figs. 38 and 39. This limitation is defined by the 
envelope of the straight characteristic lines that must always form for a com- 
pression wave in this first-order theory, as will be proven later. This envelope 
of the straight characteristic lines corresponds to a discontinuity that can be 
interpreted as a discontinuity in vi], or the breaking of the wave crest. This leads 
to the hydraulic jump or surge that will be discussed later. The gas dynamic 
case has the envelope of the straight characteristic lines interpreted as a steady- 
state shock wave [see, e.g., COURANT and FRIEDRICHS (1948, pp. 110-181)]. 
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1) Two-dimensional, steady, sufiercritical flow by the first-onler shallow-water 
theory. We will now investigate the characteristic curves of the nonlinear equations 
of the first-order shallow-water theory for the case of steady two-dimensional flow. 
We will find that real characteristic curves, which are a great aid to numerical 
calculations, exist only in the regions wherein the flow is everywhere supercritical. 

If we consider the steady two-dimensional flow over a flat horizontal bottom, 
then we may write (28.2) as 

u~~++u,=-g((rl+~2,),=-(c2),, 
fJ+&+ww,= -g(q +&J,= - (c2),, 

[.~(17+h,)l,+[w(rl+~,)l,=O 01 (~c~L+(wc~)~=O, 
(30.4 5) 

u = plr, w = pie, u, = w, = M XX’ t 
By multiplying the first equation by u = Q?Z and the second by w = qZ, and adding, 
we obtain 

d~.z + 2g?,~,94zz + dpl,z = - [~,x(c"), + ~)a(c~)rl= (ma + ys,,,) c2. (30.16) 
Therefore 

6s 
( 1 7-I pwf2 7 p?xz + (2 -1) q%e = 0 (30*4 7) 

or 

( 1 I-f Pzn - 2 y pxa + (1 - gj pzz = 0 mm 

where cs(x, z) =g-[h, +y (x, z)] and h, ,now is the still water depth found when- 
ever (u2+w2) =O=q. Note that (30.18) immediately linearizes to (29.3),* so 
that the numerical differences between the solutions of (29.3) and (30.18) will 
provide an estimate of whether or not the second-order shallow-water theory, 
as discussed in Sect. 31, must be introduced. 

The characteristic curves of (30.18) may be found in a manner similar to that 
used for (30.3) by finding the curve [x(a), z(ct)] in the (x, z)-plane along which 
prescribed values of Q)Z and cpz cannot determine vZZ, vna and vez. Therefore we write 

which may not have a solution if the determinant of the coefficient is zero, that is if 

or 
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which therefore gives the slopes of the two families (C, and C-) of characteristic 
curves. Now, however, entirely unlike the previous one-dimensional unsteady 
flow solution, the characteristic curves exist only for supercritical flow, i.e., 
for @+w2> c2=g (Iz,,+~). The fact that the characteristic curves are real for 
supercritical flow means that in this case the nonlinear equation (30.17) is hyper- 
bolic. However, for subcritical flow, since the characteristic curves are then 
complex functions, it is of elliptic type [see, e.g., COURANT and FRIEDRICHS 
(1948, pp. 40-55) or PREISWERK (1938)]. 

We can obtain a solution for the behavior of the quantity 

F(x,z) =1JF 2 1 (30.24 

(which defines the Froude number of the supercritical flow) along a character- 
istic curve by transforming (30.18) into the (~4, w)-plane, called the hodograph 
plane, through the use of the Legendre contact transformation which is given 
by [see, e.g., COURANT and FRIEDRICHS (1948, p. 249) or PREISWERK (1938)] 

x=(xplx+zp18-Q))=(xzt+~w--), 
dX = (xdzl fzddx +zdw $wdx-dp) = (Xd% fzdw). 

Hence 
x=x,, 2 =f.&J, 

dx = x,dti + x,d, =‘Xuudu +XuWdw, 

dy =q,dti -/-zWdw=~Xumd~-+-~Wmdw. 

Solving for du and dw, we obtain 

du=N-l(xIL’Wdx-xuIdz) =dpl,=cp,,dx+pl,,dz, 
dw =N-l(-xXuId~+~uud~) =d~Z=~x.ddx+pl,,dx, 

where 
N= xuu x24w +o, 

I I XUW XWW 
so that 

XWW Pzx=,* 
XUW plxz= - --N’ XUU qJzz = 7’ 

The nonlinear equation (30.17) in the physical (x, z)-plane is transformed into 
the following linear equation in the hodograph (u, w)-plane: 

zv2 
( 1 7-l xuu --$%w+($-lj~ww=o. (W23) 

The same procedure used in (30.19) through (30.21), or a simple comparison of 
(30.179, (30.21), and (30.23), shows that the characteristic curves of (30.23) 
in the hodograph (u, w)-plane are defined by 

(30.24) 

The characteristic curve II in the hodograph (u, w)-plane is orthogonal to 
the characteristic curve C, in the physical (x, ,z)-plane if we superimpose the two 
planes so that the velocity vectors coincide. This may be easily shown by rotating 

See separate file errata.pdf
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the axes for (30.21) and (30.24) so that w =0 (see Fig. 40) ; then the equations 
for the slopes of the characteristic curves C, and IY simplify to 

dz t-1 - 1 1 
dx c, 212 --I ca 

(30.25) 

Similarly, I’+ is orthogonal to C- when the planes are superimposed so that the 
velocity vectors are coincident (see Fig. 40). 

Fig. 40. Characteristic directions in the hodograph (u, @-plane and the physical (x, x)-plane. 

Eqs. (30.24) and (30.25) show that along any characteristic curve there exists 
a simple solution which is independent of the boundary conditions of a particular 
problem, for we can directly integrate (30.25) with axes rotated so that w =0 
and hence dw = zt d6 : 

We integrate1 (30.25) as follows: 

Consequently (30.26) provides a general solution, independent of the boundary 
conditions in the physical plane, for any two-dimensional potential flow that 
possesses the property of having simple waves in the given region, so that the 
end of the velocity vector follows I’- in the hodograph plane. The numerical values 
from (30.26) are indicated in Fig. 40 and are tabulated in Table 1 on page 688 
[taken from PREISWERK (1938)]. 

The useful relation between c and (u, w) that was used to integrate (30.26) 
and calculate Table 1 is obtained by multiplying the first equation in (30.15) 

’ see (30.27) and (30.29) which show that with w = 0 
du -=- 
u y =+~(,+~Fl)-aFdF=+F(l~~FPi . 
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by dx ad the second equation by dz, and then adding them. One obtains suc- 
cessively 

u (~4% dx + u, dz) + w (W.&C + wa dx) = - [(cZ)~ dx + (c2)$ dz] , 

w&b-+wdw =-d(G) =-gdrj, 

i 
(30.27) 

Therefore+ (u” + w”) + c2 = const =Q(ti2+w2) +g(Iz,+y7). 

&(24”+w2) +c2=+ (u2+w2) +sP,+d 
=gko=~(u2+w2)max=~C2*=~q2+c”=Q~~ax, i 

t30.28) 

where (see Fig. 41) k, is the still water depth (or stagnation total head depth) 
that corresponds to z.4: + w,2 = 0 = yl,, , (u” + w2)max is the limiting resultant velocity 

Fig. 41 a-c. Reflection of expansion wave?. 

squared which is approached when the depth of flowing water approaches zero -__ 
(~-+-IQ,), and c* is the speed when the resultant velocity ‘VU”+ w2= c* is critical 
(fi = I), -so that 

2 c* _ Gil- _ 2 

( I--.----- 
- 
CO gho 3 

25 
0 

’ (303 
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It is very useful to note that Eqs. (30.26) through (30.29) may all be obtained 
directly from the two-dimensional isentropic gas-flow equations by simply letting 
the specific heat ratio y = 2 and F = M, F* = M, , as had been previously shown 
by PREISWERK (1938) [ see also COURANT and FRIEDRICHS (1948)j.’ 

Fig. 42 a and b. Hodograph (u, m)-plane characteristic epicycloids. 

The Riemann invariants for the characteristic curves (C,, C-) will now be 
determined. First we can show that the velocity component normal to the 
characteristic c.urves is always the local velocity of the shallow-water wave 
propagation, c(x, 2). We do this by writing (30.21) as 

(u dz - w ax):+ = c2 [(d~)~ + (dz)2],+ = G(dA);+ , 
(30.30) 

since the relation between the normal direction (s), and the tangential direction (A) 
along the characteristic curve (C,) is given by (see Fig. 40) 

(gc+ = M,, (3, = - (3+* 
Similarly, if ,U is the tangential direction along C-, 

Also, from Fig. 40 and (30.21) 
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where q is the resultant velocity magnitude. Hence 

q2 = (u” + 20”) = (c/l; + d) = ($ + c”) ) fi=tan-l+, 

u -qcos8, w = qsin6, 

Q~~=c =qsina, cpn=qCOSct=qlp. 

Substituting (30.31) and (30.32) into (30.21) and (30.24) we obtain 

cos8sin8 
dz 

t-1 
sin2 ct i:1 tan c( 

dx c&= COG 6 = tan (8 & x) , 

sina a 

cos8sin6 
dw - 

( i 
sin2 c( %i tan CL - 

du r,= sin2 8 ~ = - cot (8 f a). 
--I sin2 c( 

Therefore, as proven before in (30.25), 

687 

(30.37‘) 

(30*33) 

(30.34) 

(30.35) 

that is, as shown in Fig. 4.0, the C, characteristic curves in the physical (x, z) 
plane are at every corresponding point orthogonal to the I?. characteristic curves 
in the hodograph (~4, W) plane. All these results are the same as in the gas-dynamics 
case where the C, characteristic curves are referred to as the Mach lines since, 
as shown by (30.30)~ the normal velocity component is always the local speed 
of sound. 

Now, as shown in Fig. 40, 

= tan mr- ; 

= tan fxr+ ; 

therefore (‘JO.??) may be written as 

=tan(G+a) =tan 

Consequently the Riemann invariants are given by 

R=6+a-w---~n, s =?9-u-uQ+-/-~n. 

These may be simplified by calculating 

or-= arc tan g 
( 1 

r- = -j/,arccot[v&j =-~?arctan[j/~~ 

from (30.24) and Fig. 40 since 

[or see COURANT and FRIEDRICHS (1948, p. 266)]. 
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f 
(deg.) 

0 
1 
2 
3 
4 

2 
7 
8 
9 

10 
II 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

I 1+L 
ho 

213 1.000 1 .ooo 
0.624 1.062 1.098 
0.598 1.101 1.160 
0.576 1.129 1.214 
0.555 1.156 1.267 
0.535 1.182 I.319 
0.516 1.207 1.371 
0.498 I.229 1.422 
0.481 1.249 1.470 
0.464 1.269 1.520 
0.448 1.288 I.570 
0.432 1.306 1.622 
0.417 1.323 1.674 
0.402 1.340 1.727 
0.387 I.356 1.781 
0.373 1.372 1.835 
0.359 I.387 1.89 
0.345 1.402 1.95 
0.331 1.416 2.01 
0.318 1.430 2.07 
0.305 1.444 2.13 
0.292 1.457 2.20 
0.280 1.470 2.27 
0.268 1.482 2.34 
0.256 1.494 2.41 
0.245 I.505 2.48 

Therefore 

R= =: 

Fe F K 

z8 
2.07 
1.40 
1.014 
0.758 
0.590 
0.476 
0.394 
0.318 
0.263 
0.215 
0.170 
0.133 
0.103 
0.072 
0.046 
0.020 

-0.004 
-0.028 
-0.050 
-0.071 
-0.089 
- 0.10s 
-0.126 
-0.143 

Table 1. 

f 
!deg.) 

26 
27 
28 
29 

;: 
32 
33 

:: 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

65’;3/ 

- 
I+2 

ho 

0.234 
0.223 
0.212 
0.201 
0.190 
0.180 
0.170 
0.160 
0.151 
0.141 
0.132 
0.123 
0.115 
0.107 
0.099 
0.092 
0.085 
0.078 
0.072 
0.066 
0.060 
0.054 
0.048 
0.043 
0.038 
0 

1.516 2.56 
1.527 2.64 
1.538 2.73 
1.549 2.82 
I.559 2.92 
1.569 3.02 
1.579 3.13 
1.588 3.24 
I.597 3.36 
1.605 3.49 
1.613 3.63 
1.621 3.78 
1.629 3.93 
1.637 4.01 
1.644 4.26 
1.651 4.44 
I.657 4.63 
1.663 4.85 
1.669 5.08 
1.675 5.33 
1.681 5.62 
1.686 5.95 
1.691 6.30 
1.696 6.68 
1.700 7.11 

IJs Co 

B + arc tan ti7 - : + l/y arc tan FZ-1 

v- 
3 

I F K 

- 0.160 
- 0.177 
- 0.196 
- 0.216 
- 0.234 
-0.252 
-0.271 
-0.291 
- 0.313 
- 0.336 
- 0.36 
- 0.38 
- 0.40 
- 0.43 
- 0.46 
- 0.49 
- 0.52 
- 0.54 
-0.58 
- 0.62 
- 0.66 
-0.70 
- 0.75 
- 0.81 
- 0.86 

--co 

= 8 + 111 arc tan 
1” 

y-arctanj/F2-1 =@+f(F), 

S =6--arctan1_+~---lilarctan 
1/F”- 1 v 

v 

v+arctan1/F2-1 =@-/(I;), 

where f(F) is given by (30.26) and Table 1. Consequently the Riemann invariants 
are very simply expressed for the characteristic curves in the physical plane as 

6--f(F) =const on C,, 6 + f(F) =const on C-. (30.36) 

The function f(F), which was derived from the fact that the end point of the 
velocity vector follows a characteristic in the hodograph plane in (30.26), is 
seen to have important physical significance, and directly provides the Riemann 
invariants for the steady two-dimensional potential flow. In gas dynamics 
f(F) = f (A4) is referred to as the Prandtl-Meyer expansion function and, in the 
form in which it is given in Table 1, it corresponds to the supersonic free expansion 
about a sharp corner as shown in Fig. 43 for the centered simple wave with a’ 
specific heat ratio y =2. Since this Prandtl-Meyer function is so important, 
let us re-derive it on another basis that will further illustrate its physical signi- 
ficance. From the fact that f forms the Riemann invariant it is evident that zt 
and w cannot be independent of one another on any such simple characteristic. 
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Consequently, if we write the original potential equation (30.18) in the physical 
plane as 

24,+23+-$)ze;=o 

and introduce w = w (u) so that 

we obtain 
WY = z$ w’(u) , ux w’(u) = wz = Qlxz = uy , 

or 

(30.24’) 

G2 ’ 

Pig. 43a-d. Simple waves and the formation of hydraulic jumps. (a) Complete centered simple expansion wave. 
(b) Simple(C+) expansion waves. (c) Simple (C,) compression waves forming a discontinuous (hydraulic jump) increase in 

water depth. (d) Detached hydraulic jump. 

This derivation gives exactly the same result as in (30.24) and verifies the fact 
that discontinuities can occur in the first derivatives normal to a characteristic 
curve. If we introduce (30.32) into (30.24) we obtain the equivalent of (30.26) 

Handbuch der Physik, Bd. IX. 

1 47 _ 
4 da 

tan cc = V$-T (30.3 7) 

44 
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which again has f(F) as the general integral because (30.28) shows that 

(30.38) 

However, neither of these methods gives the direct proof that f(F) provides the 
Riemann invariant. This fact may be proved directly by the following derivation 
which utilizes the velocity component ~1~ along the C, characteristic, and q~%=c, 
from (30.30), normal to C”+ as shown in’l?ig. 40. Hence 

(30.39) 

(30.40) 

qJo,=qcosa, vW=c =qsinu, 

d~r=cosadq-qsinadct=c(d@-dda), 
Ax = l/sin (0 + IX), p, = I/sin (8 - a) 

since, from (30.37), 
dq= Eqd6. 

Then from (30.28) and (30.32) we have 

~q2+C2=~(~~+~~)+C2=~pl~+~C2=gq~nax=~C~, 
c2 = 5 (qLax - qJ3 =z%-Qp,I, 

so that (30.39) may be written 

This may be finally written in terms of (F) alone by noting from (30.39) that 

Consequently (30.41) reduces to 

6(F) - 1JI arc tan (v+ (F2 - 4)) - arc tan ,,1, + const 
(30.42) 

=6 (F) -13 arc tan (~+cF2-l))+ arctanvF2-I=@--f(F)=const, 

where f(F) is the same Prandtl-Meyer function as given in (30.26) and Table 1. 
Therefore we have proven that the Riemann invariants are given by (30.36) 
and (30.26). In addition to the relation between f and F in (30.26) it is sometimes 
convenient to use one of the following: 

f(a) = j/Tarccot (j/ytana) See-+n 
(30.26’) 

=f(F,)=v?;arctan 

It now follows that a numerical solution can be obtained for the general prob- 
lem in which both families of characteristics represent curved non-simple waves 
by carrying on a simultaneous finite-difference solution in the physical (x, x)- 
plane with (30.33), and in the hodograph (u, w)-plane by (30.26), (30.34.), and 
(30.36). Almost any initial- or boundary-value data can be handled in this 
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manner as long as the curve on which the data are given is not coincident with a 
characteristic curve. The solution cannot be obtained in the neighborhood of 
any portion of the boundary-value curve that happens to be tangent to any 
characteristic curve, because, as proven by (j0.20), the solution is indeterminate 
for boundary-value data given on a characteristic. It is easily seen by this finite- 
difference method that the data along a smooth non-characteristic curve can only 
determine the solution inside the quadrilateral formed by the characteristic curves 
passing through its end points (Fig. 42) [see, e.g., PREISWERK (1938) or COURANT 
and FRIEDRICHS (1948)]. This well-known behavior of hyperbolic-type partial 
differential equations is most directly demonstrated by writing them in their 
normal or canonical form by transforming the coordinates to curvilinear axes 
which are the characteristic curves themselves. For example, PREISWERK (1938) 
transforms the equivalent of (30.23) onto the’curvilinear characteristic-coordinate 
(A, ,u) system to obtain 

(30.43) 

This normal or canonical form is so useful in carrying out the finite-difference 
method of solution that the values of K have also been included in Table 1. 
It can be used in the following type of approximation, as indicated in Fig. 42 
where (1, 3) are known values and (2,4) are to be calculated, 

Consequently, if the data were given on only one characteristic curve the method 
would fail since the values must be known on both characteristics, or on the non- 
characteristic curve s in Fig. 4.2, so that one can also write 

The numerical method of solution by finite differences following (30.43’) 
is known as the “lattice-point method” and replaces the original partial dif- 
ferential equation (30.43) by a set of linear algebraic equations. The other com- 
monly used semi-graphical method of solving hyperbolic partial differential 
equations is called the network or “mesh method” and can be illustrated by 
writing (30.43) in the form 

~JA=--K(xI+xJ~~, 
~~~=--K(xn+x,M~. 

(30.43”) 
* 

The average value at the center of each mesh formed by the characteristic net- 
work is used for the trial and error numerical calculation of each A increment. 
The increments are drawn tangent to the characteristic curves as indicated in 
Fig. 42. The simultaneous semi-graphical solution must be carried out in the 
physical plane as shown in Fig. 42 by using (30.33) and writing (30.39) and 
(30.41) in finite difference form. 

44* 
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As a further aid to numerical and graphical solutions it is useful to plot 
f (FJ from (30.26') or Table 1 on the hodograph (u/c*, w/c,)-plane as shown in 
Fig. 42. The single curve defined by Table 1 may be drawn and then rotated 
by equal increments of 46, or the construction may be accomplished entirely 
by graphical means as indicated in Fig. 42 by rotating the small circle upon the 
inner unit circle representing critical flow, while the outer maximum circle has 
a radius of vl representing qmax /c* from (30.29). This geometrical construction 
yields f (F*) since it is an epicycloid, as proven by PREISWERK (1938), or Cou- 
RANT and FRIEDRICHS (1948, p. 262). All simple waves must follow the char- 
acteristic epicycloid in the hodograph plane because simple waves are defined by 
(30.37) which has been proven to have f (F*) as its integral. It can be shown 
that all streamlines corresponding to non-simple waves must lie within the cor- 
responding characteristic epicycloids as indicated in Fig. 42, since the stream- 
line must have 

unless a finite discontinuity corresponding to a hydraulic jump (or shock wave 
in a gas) is formed. 

Another useful aid in the hodograph graphical construction is the velocity 
ellipse, which is also drawn in Fig. 42. Wherever the velocity vector q touches 
the curve of the ellipse, it will be found that the major axis of the ellipse is in 
the direction of the tangent to the corresponding characteristic (either C, or C-) 
in the physical plane because, as a consequence of (30.29) and (30.32), if we assume 
that 6 =ct then 

(w/c*)2 = F;4 sin2cr = F$/F2 = Q(j -F,2), 
(u/c*)2= F,2(i - sin2x) = f+(Fi - I), 

$(u/c*)"+ 1 = F*" = 3 - 2(w/c,)“, 

or 

g(~lC*)2+(~/C*)2=~=[Q(~~ic*)2+(CIC*)2lC_,6=0=[g(P)1/C*)2+(CIC*)2lC+,6=0. (30.45) 
This gives the velocity ellipse shown in Fig. 42 with a major axis of 17 and a 
minor axis of unity. The major axis is always at the Mach angle a with respect 
to the velocity vector q because we find from (30.28) and (30.32) that when a =6 

(w/c*)” = (q&/c*)2 = (c/c*)” = 1 - Q (u/c*)“. 

As in the previous case of unsteady one-dimensional flow over a flat bottom 
we can obtain very simple solutions for the case of simple waves. In this case 
there is an analogy between the (t, x) diagram and the (x, z) diagram [see, e.g., 
COURANT and FRIEDRICHS (19$3)]. As before, the simple wave corresponds to 
having the characteristics in the (x, z)-plane of one family become straight lines, 
as in the examples shown in Fig. 43, so that (q, 6, CI, 7) are all constant on the 
straight line dz/dx = const in the physical plane. Therefore any given straight 
characteristic line has all of its properties determined by f (F*) from (30.26) 
and each of the straight lines in the physical plane maps onto a single point of 
the same single characteristic epicycloid in the hodograph plane. The character- 
istics of the other family remain curved in the physical plane and map in a 
unique continuous manner upon the corresponding characteristic epicycloid 
arcs in the hodograph plane. As before, in a simple wave these curved character- 
istics are not required for a numerical solution. 
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Common examples of simple-wave problems are shown in Fig. 43, and they 
alw,ays occur whenever a region of constant uniform properties adjoins a region 
having any variation in its properties, the two regions always being joined by 
a straight-line physical characteristic (dz/dx = const) as long as no finite dis- 
continuities, corresponding to hydraulic jumps or shock waves, have been formed. 
These finite discontinuities correspond to an envelope of the straight character- 
istic lines that must form whenever the boundary-surface curves towards the 
oncoming flow, resulting in a flow compression or decrease of velocity and increase 
in water depth as indicated in Fig. 43. The solution is no longer single valued 
at, or downstream of the envelope so this region must be replaced by a hydraulic 
jump having a finite discontinuity. 

If the local flow velocity and water depth are required only on the curved 
boundary itself, then neither family of characteristics has to be determined 
(except as a precaution to verify that no finite discontinuities have formed near 
the boundary due to flow compression). The solution on the curved boundary 
itself is given directly from Table 1 by simply measuring f (F*) as the value cor- 
responding to (see Fig. 4.3) 

(30.46) 

If this expression becomes zero it signifies that the supercritical flow has been 
compressed to critical speed and a detached hydraulic jump can occur as in 
Fig. 43. 

Whenever disturbance waves enter along both families, either due to another 
boundary or by reflection from a hydraulic jump, as in Fig. 41, then the mixed 
region contains non-simple waves, and only a numerical solution, similar to the 
ones discussed in conjunction with (30.43)~ can yield the exact solution. However, 
an approximate solution for the particular cases shown in Fig. 41 can be obtained 
by approximating the curved characteristics in the non-simple region by means 
of simple-wave straight characteristic lines. The geometrical construction assumes 
that the curved boundary wall of the nozzle can be replaced by a series of straight 
chord lines which each have the same magnitude of A6 at every corner, as depicted 
in Fig. 44. At each expansion corner it is assumed that the centered simple wave 
(corresponding to a portion of the complete Prandtl-Meyer expansion, f) can be 
approximated by a single physical characteristic that is the average of the actual 
expansion. fan of characteristics. This is the (dz/dx) straight line that is normal 
to the midpoint of the A6 epicycloid arc representing the expansion-angle change 
at this corner, as shown in Fig. 44. Similarly, the compression corner that turns 
into the flow is represented by the single compression simple wave that is normal 
to the midpoint of the A6 epicycloid arc representing the compression angle 
change at this corner. It will be shown that the angle of this single average 
compression wave is actually the correct limiting value for a weak hydraulic jump. 
The geometrical construction is carried out in the manner indicated in Fig. 44. 
Whenever a streamline crosses one of these finite amplitude construction char- 
acteristics the flow is assumed to bend through the A6 associated with the finite 
corner bend which supposedly produced this single finite wave. The correspond- 
ing construction in the hodograph plane transfers to the epicycloid arc that is 
normal to the single finite wave in the physical plane as shown in Fig. 44. 

Also shown in Fig. 44 are the geometric constructions required for the reflection 
of these simple finite waves in the physical plane from either solid boundaries, 
or from free boundaries with constant water depth. In the reflection from a 
solid boundary the original boundary slope is again attained by the velocity 
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vector after passing through the reflected wave which has the same strength 
for flow deflection as the original oncoming finite simple wave. In the hodograph 
plane the streamline has gone from one family of epicycloids to the other, ending 
at the same value of 6. The completed solution for the flow inside a channel 

Fig. 44. Reflection of compression and expansion WBYBS. 

of varying width having supercritical flow (F> 1) is presented in Fig. 41. For 
additional details and aids on the graphical constructions see PREISWERK (1938). 
As another example in Fig. 44, consider the reflection from a free jet, hydraulic 
jump, or any constant-water-depth free boundary, which must occur in such a 
manner that the same water depth is maintained after passing through the reflected 
wave which is not only on the opposite family of epicycloid arcs, but now must 
have the negative algebraic strength of the flow deflection of the original oncom- 
ing wave; consequently, the value of A8 is exactly doubled after passing through 
the reflected wave. That is to say, unlike the ordinary reflection from a solid 
boundary, the reflection from a constant-depth free boundary results in the 
opposite type of wave, an expansion wave becoming a compression wave and vice 
versa. 
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In conclusion it must be noted that this two-dimensional steady-flow analysis 
is only valid for a flat horizontal bottom, as was already shown by (29.3) for the 
linearized equations. If the bottom slope varies, then the Riemann invariants 
do not exist, simple waves do not occur, and the numerical solution is much more 
complicated. However, there is an even more important criterion that must be 
satisfied before any of the solutions given so far can be applicable. This is the 
necessary requirement that all the perturbation quantities involved (H - U, w, 7) 
must be sufficiently small so that it is not necessary to introduce the second-order 
terms from Sect. 31. A satisfactory evaluation of this criterion, at least for F 
not too near unity, can be obtained by comparing the solutions of the non-linear 
equation (30.17) with the linearized equation (29.23) or (29.32). As is well- 
known in gas dynamics, and is apparent by inspection, (29.23) and (29.32) are 
not satisfactory for F approaching unity since additional terms must then be 
retained. For example, on the boundary profile itself, (29.3) for a flat horizontal 
bottom must include the additional term 3 F2(p?z/U)pl,,, which corresponds to 
the I‘ transonic approximation” of the gas dynamic equation (with a specific 
heat ratio y = 2) in the limit as F approaches unity. However, for the solution 
of the steady flow everywhere about a two-dimensional profile it may be necessary 
to use 

since (29.29) indicates that far from the profile w/U =q~JUwl/z, whereas 
(fJ - U)/U=qJ.$lJ-l/z”. I n any case any radical increase in the order of magnitude 
of any perturbation term immediately indicates that the second-order terms 
discussed in Sect. 31 must be introduced, since the non-linear equation (28.1) 
and all the preceding results are based only on the first-order terms of the shallow- 
water theory. 

y) Ooze-dime&o+sal, steady, o#elz-charnel hydra&x and the hydraulic jumfi. 
The reltations given in Eqs. (30.27) (30.28) and (39.29), and shown in Fig. 41, 
can be used in what is commonly known as the steady “one-dimensional” hydrau- 
lics of open-channel flow. Here we assume that even though the channel width 
b (x) is varying, still the values of 4 (x) and 17 (x) do not depend upon z and there- 
fore do not vary on any given cross-section. In conjunction with the steady 
“ one-dimensional” concept it is necessary that w M o ~8. Consequently the 
basic equations to be used for a flat horizontal bottom are given by 4 (x) = u (x) 
in (30.27), (30.28) and (30.29)( and, in addition, by the “one-dimensional” con- 
tinuity equation 

b(x)h(x)u(x)=A(x)u(x)=Q=(e)=const, 

where, from Fig. 41, k(x) =k,+q(x) =A(x)/b(x). 

(30.48) 

The validity of the “one-dimensional” assumption can be considerably in 
error if b’(x) is large since it is obvious that in this case w or 8 cannot be small. 
However, the “one-dimensional” approximation gives surprisingly good numerical 
values, even in supercritical flow if the channel is well designed as in Fig. 41 so 
as to maintain the flow as uniform as possible. However in supercritical flow the 
velocity over any cross-section remains uniform only near the design Froude 
number (F). PREISWERK (1938) gives the calculated and measured water depths 
in a Laval-type nozzle (the same one duplicated in Fig. 41) at various super- 
critical Froude numbers (F > 1). His results indicate that “ one-dimensional” 
hydraulics gives a satisfactory approximation, having an error probably less 
than 10 % , even for critical or supercritical flow. This method should be especially 

See separate file errata.pdf
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useful for subcritical flow since the more exact numerical solution is now very 
difficult to obtain because the simple method of characteristics is no longer applic- 
able. 

The most useful, and obviously the most accurate, application of “one-dimen- 
sional” hydraulics is to the constant-width rectangular-cross-section open-channel 
flow. In this application the friction effect of the vertical channel walls generally 
has a greater effect on the variation of 2 (x,’ y, Z) than would any of the more exact 
terms of the complete first-order shallow-water equations (28.1) which have been 
derived on the assumption of negligible viscosity effects. Consequently the 

Fig. 45a-d. (a) One-dimensional flow over a sloping bottom, Jdy/dxl< 1 SO centrifugal force negligible. (b) Normal 
hydraulic jump. (c) Undulating hydraulic jump. (d) Oblique hydraulic jump with w = w, = 18%. 

“ one-dimensional” assumption that q = u (x) provides a satisfactory approxima- 
tion for the constant width (b), rectangular-cross-section, vertical-wall channel 
having A(x) = bd (x). Even more important, this open-channel flow analysis 
may be further generalized, with but little additional difficulty, to apply to a 
bottom slope varying also with x. The “one-dimensional” continuity equation 
(30.48) then becomes 

(30.49) 

where d(x) is measured vertically,from the varying bottom as shown in Fig. 45. 
The generalization of the Bernoulli equation (30.27) to include extraneous head 
losses (2iL), other than those due to friction, and local variations in the bottom 
contour y(x), as shown in Fig. 45, may be written as 

(specific energy) = tkg ~~ters~ = (meters) = d (x) + F + y (x) -/- FyL (x) 

=4x)+& 
(30.50) 

+ y (x) + hL (x) = const . 

This assumes that in steady flow the work of gravity, through the known average 
slope of the flow, is wholly spent in overcoming the frictional resistance. 
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Another relation, that is necessary for calculating the sudden additional head 
loss hL in hydraulic jumps or other discontinuous flow phenomenon, is given by 
the impulse-momentum relation [see KELVIN (1886), RAYLEIGH (1914), or BAKH- 
METEFF (1932)], 

(specificmomentum) =(zj=+gd2(X) +d(x)u2(X) 

= ;- g d2 (%) + $!!$; 

which is constant across the hydraulic jump over a flat horizontal bottom as 
shown in Fig. 45. 

Eq. (30.50) with zero additional head loss (hL =O), gives the “one-dimensional” 
solution for the open-channel flow that has no finite discontinuities in the flow 
itself, and either has the hydraulic frictional resistance exactly balanced by the 
given average slope for steady flow (so that if y =O the surface slope is parallel 
to the bottom), or the hydraulic frictional resistance can be approximated by the 
Chezy formula for the case of varying open-channel flow [see BAKHMETEFF (1932) 
or STOKER (1957)]. A useful concept for nearly all solutions is the definition of 
the critical depth d,, which corresponds to our previous definition of critical 
flow velocity in (30.28), that is, with w wOm8 we assume that 

u* = c* = +%, z *, F* =I=F, 
(30.52) 

The last relation for d, can be obtained either directly from (30.27), or by sub- 
stituting the expression uB = I-gh, into (30.50) with y and hL both zero. Also 
from (30.29) we have 

i 

(30.53) 

As an example, if we apply Eqs. (30.50) and (30.52) to determine the flow 
relations between stations (1) and (2) in Fig. 45 a we obtain, since hL is generally 
negligible for a smooth variation in ys, 

as a satisfactory approximation for “one-dimensional” hydraulics, at least as 
long as y2/d, is sufficiently small, It is interesting to note that here is another 
resemblance to gas-dynamics behaviour since 

Y2 + 4 
da 

<$>I for Fl -=c 1, 
* 

~2+d2 >$<I & * 
for F, > 1. 

As another example, if we consider the hydraulic jump shown in Fig. 45 b, 
now we find that a solution can only be obtained by using the impulse-momentum 
relation (30.51), thereby proving that the discontinuous change occurring in a 
hydraulic jump must result in a head loss. If the bottom slope is negligible, as 

Ronald W. Yeung
"Surface Waves Online" - Copyright 2002, Regents of the University of California.  All Rights Reserved



698 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 30. 

indicated in Fig. 45 b, then the impulse-momentum relation (30.51) may be writ- 
ten, with Q/b =uldI =u2d2, in the following manner, first given by RAYLEIGH 
(1914) : 

or, if we let the actual rise in water level be a = d, - a,, 

F,=&- 

where 
lgd, - [I + + t + + (+)2]* ’ 

I+$,$,+ 
1 1 [1:’ 

;++!;;A - ,] = + [l/l +8F,- I] 

Similarly, (30.54) can also be solved for 

F,a+&++~(l +$)=F+!$ 
2 2 2 

Eqs. (30.54) and (30.57) may be multiplied together to yield 

(30.54) 

(30.55) 

(‘10.56) 

(30.57) 

The last inequality in (30.58) is obtained from (30.50) and (30.52) by noting that 
in any finite hydraulic jump the head loss must also be finite, SO that Iz,~ =& - 
h,a>~ and (30.50) must be written as 

Thus (30.52) and (30.59) give the total head ratio, and therefore the critical speed 
ratio, as 

h,,- cz* 
( 1 

2 

h 
= 1 - !s = --2*_ d 

01 Cl” h d 

(Y*+8F,p-‘)u:+qF:6 <,. t30.60) 

= (1/l + 8F,a - 1)2 (2 + F:) i 

Consequently there is no direct analogy between finite hydraulic jumps and 
gas-dynamic shock waves, as was pointed out by PREISWERK (1938), since in 
gas dynamics the well-known Prandtl relation for normal shock waves gives 
uluz=c$, and cx is constant through the shock wave [see, e.g., COURANT and 
FRIEDRICHS (1948, p. 146)]. The equations are similar only for the limiting case 
as the hydraulic jump vanishes so that FI = F2 = 1, d, = d, , and hoa = h,l. How- 
ever this limiting process corresponds to the isentropic potential-flow case where 
there is an analogy for small perturbations over a flat horizontal bottom, as 
previously discussed. Also, as indicated by (30.59) the head loss and variation 
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in cL could be neglected until the third-order terms become important, so that 
for Fl near unity the first- and second-order terms of the hydraulic-jump rela- 
tions correspond to the gas-dynamic shock-wave relations having a specific heat 
ratio y =2. However, this is identical to the known fact that weak shock waves 
may be considered isentropic to the third order of approximation ; consequently 
the hydraulic analogy to compressible gas dynamics exists only for small per- 
turbations in potential flow. 

There is no direct analogy between the finite hydraulic jump and the gas- 
dynamic shock wave because the hydraulic jump’has a head loss that must be 
included in the specific-energy equation (30:50), This head loss results in a loss 
of kinetic energy that is no longer available as flow energy since it is converted 
into an insignificant temperature rise in the water itself. In the gas dynamics 
energy equation the entropy increase through a shock wave of course corresponds 
to a loss of kinetic energy, but this is converted, through the increase of the tem- 
perature of the gas, into an adiabatic enthalpy increase that maintains constant 
flow energy through the shock wave [see, e.g., COURANT and FRIEDRICHS (1948, 
p. 9291. The most unusual effect of this loss in flow energy (or hL) in the hy- 
draulic jump is revealed in (30.58) which shows that the flow velocity down- 
stream of a hydraulic jump is always less than in the corresponding gas dynamics 
case, which maintains c* constant so that u,u,=cg . For example, in the gas- 
dynamic case when Fi+-oo, then M,/c*--# (for y =2), and therefore ~~/c*-z+l/~~. 
However, in a hydraulic jump (30.58) shows that uz/c*+O when F,+m (or 
dc*+-p) ’ 

The experimental investigations by BAKHMETEFF (1932) have shown that 
the hydraulic jumps in a horizontal rectangular channel are in excellent agree- 
ment with the predictions of the “one-dimensional” hydraulic equations (30.54) 
through (30.60). BAKHMETEFF found that depth increases as high as 1odl were 
in excellent agreement with (30.56). I-I owever, he found that for Froude numbers 
of the oncoming flow less than 17 (i.e., F,< 111) the profile of the normal hydraulic 
jump developed undulations, and the relative length of transition became in- 
determinate because the undulating surface made the region of parallel flow 
increasingly remote from the start of the wave front, as indicated in Fig. 45~. 
It is interesting to note that F,= 1/T corresponds to the maximum absolute eleva- 
tion that a hydraulic jump can reach with a given h, (although there is no limit 
to d,/d,), since (30.53) and (30.56) may be combined to give 

which attains its maximum elevation of $JzO, above the channel bottom only for 
Fl = 13 ; at this condition we have 

This shows that for all the undulating hydraulic jumps (F,< 13) the change in 
total head is less than 5 % ; consequently these jumps can be approximated by 
the isentropic, potential-flow relations. This is of great aid in calculating the 
slant or oblique hydraulic jumps, as shown in Fig. 45 d, since the characteristic 
epicycloid values of f (F*), as given in Table 1, may be used in the manner indicated 
in (30.46) to approximate the change in F* , F, or 7 upon turning through an angle6 
by means of an oblique hydraulic jump whenever d,/d,+l. The comparison 
between the value given by f (Fl) in Table 1 for compression to F, = 1, is compared 
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with the exact values for the corresponding oblique hydraulic jumps in Fig. 46. 
It is seen that, although the gas-dynamic shock wave is not a satisfactory ap- 
proximation for F,> 1/T, still the isentropic potential relation f (F1) provides an 
excellent approximation for much greater values of Fl since the criterion for oblique 
hydraulic jumps is that the flow component normal to the discontinuity satisfy 
4 sin a< 11. 

The exact relations for the oblique hydraulic jump are given by PREISWERK 

(1938) and can be obtained by simply adding the same velocity component 
(w =ze~,=~,) tangent to both faces of the hydraulic jump as shown in Fig. 45d. 

e- 1 

Fig. 46. Maximum flow deflection (n = I), and reflection (n = 2). 

This results in the following equations (which reduce to the preceding ones for 
a normal hydraulic jump by simply letting 6+0 and a-+7$) : 

Ff= 1 tan a 
2 sin2 G( tan (CX - 8) If 

“2/?i4 2 1 sin(cc - 8) ’ 

d 2. - 
- 4 

tan cc [l&f8F,2-- 31 
tan 8 = .-_____ ~-, 

2tan2a-l++Ijl+8F$sin2a 

The last two equations in (30.61) clearly show how the oblique hydraulic jump 
approaches the same value as given by the isentropic, potential relation f (Fl) at 
a+zy value of Fl as long as d2/d1+l, since they reduce to the isentropic, potential 
characteristic curve given by (30.31) whenever $340 and d2/d1+l. As a matter 
of fact, as previously mentioned, (30.61) shows that the oblique hydraulic jump 
angle (CX) can be approximated as in Fig. 44 by 

u = i(arcsin F<l farcsin F2'l+6) +0(-t -I)'$ O(G3), (30.64 
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