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S’ vanishes since both @% and G, are zero on S. We shall assume that the behavior 
of G and @ as R+ 00 is such that the integral over 9’ vanishes as e + 00. If the 
fluid is of bounded extent, the situation considered by VOLTERRA (1934), this 
presents, of course, no difficulty. In the two cases for which G has been given 
above, it has been shown by FINKELSTEIN that this is true. For finite depth the 
proof presents no difficulty once the estimates for G are obtained; for infinite 
depth the analysis is more troublesome and we refer to his paper or to STOKER 
(1957, pp. 193/194) for proof. After letting Q-+CQ, one then has 

In the integral over F we may replace G,, by -g-lG,, because of the boundary 
condition at F. Now interchange t and t and integrate with respect to z between 
limits o and t. This gives, following an integration by parts, 

where I stands for the last integral. (G, always represents the derivative with 
respect to the seventh variable.) Recalling jhe properties of G in (22.4), one finds 

1 
-~G,,(~,o,5,x,y,z;t,t)li(E,i,t)dt}d~dt+I, 
f?g 

0 

where @((x, y, x, 0) is determined up to an additive constant as the solution to 
a Neumann problem, since Cijfi (x, y, z, 0) is given on all boundaries and bounded 
at infinity. In the integral 1 we note that Qt;,=VL(t) is known on S,, but @t is not. 

If there are no moving bodies in the fluid, then the integral I is not present 
and di is determined by the initial displacement and velocity of the free surface 
and the given pressure distribution over it. This is VOLTERRA'S result as extended 
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606 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 22. 

to unbounded fluids by FINKELSTEIN. If surfaces S, are present, one may still 
use (22.8) to derive an integral equation in the same way that (16.13) was derived. 
For as (x, y, Z) is made to approach a point (x0, yO, zO) of S,, 

Thus, after carrying out the integration with respect to z, one has an integral 
equation for @(x, y, Z, t) for each value of t>O. This may be used to find the 
value of @, and hence @$, on the surface S,, providing that the integral equation 
can be solved. One may then use (22.8) to determine @(x, y, Z, t) for all values 
of (x, y, Z) in the fluid. The integral equation has the same appearance as (22.8) 
except that the first two terms have coefficients k and (x, y, Z) is understood to 
be a point of S,,,. This further extension of VOLTERRA’S analysis is also due to 
FINKELSTEIN. 

Uniqueness of 0 (x, y, Z, t), at least up to an additive constant, may be proved 
a follows. Let @i and G2 be two solutions satisfying the boundary conditions. 
Then @ = @i- Q& satisfies (22.8) with f, F, fi and V, all identically zero, i.e. 

CD (x, y, z, t) = const - -& G,,Q$do. 
0 S??8 

If we assume that G, is 0 (R-l-“) as R-t co, then Q and grad @will have the same 
behavior and the integrals we shall write below may be shown to exist. As has 
been mentioned above, G,, vanishes much quicker than is required in the cases 
when the fluid is infinitely deep and when the fixed surface consists of a horizontal 
bottom; if the fluid is bounded in extent, no such condition is necessary to make 
the integrals converge. 

Consider then, following VOLTERRA, 

since 0% vanishes on S and S,. Now apply GREEN’S theorem and denote the 
volume occupied by fluid by T: 

Qn=- grad @$ . grad Q, d z = - + & J/J (grad @a) d t . 
T T 

Hence 
a 

-iJJ at 1 @da + 
F g 

(grad @)2dz = 0 
T 

and 

//.f- @da + s/J (grad @)2dt = const. (22.9) 
F T 

1 Cf. O.D. KELLOGG: Foundations of potential theory, p. 167. Berlin: Springer 1929. 
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Sect. 22. Initial-value problems. 607 

Since Qfi= 0 on F, S and S, for t = 0, @(x, y, z, 0) = C, a constant; hence grad @= 0 
for t = 0. Also @$(x, y, Z, 0) = 0. Hence the constant in (22.9) is zero and @Jt and 
grad @ vanish for all t. Thus @ (x, y, Z, t) = const and the solution of the initial- 
value problem is determined up to a constant. 

/?,J The Cawhy-Poisson flroblem. In this classical problem of water-wave 
theory, the pressure over the free surface is constant, say zero, the fluid is infi- 
nitely deep or bounded below by a horizontal bottom, no obstructions are present 
and the initial displacement and velocity of the free surface are given. The two- 
and three-dimensional cases will be separated in order to illustrate different 
methods of approach. 

Three dimensions. The velocity potential may be obtained directly from 
(22.8) after setting # (x, X, t) and I equal to zero. However, the explicit expressions 
for G and G, are needed. As was noted in Sect. 22~4, these can be written down 
immediately from (13.49) for infinite depth and (13.53) for depth h. The resulting 
expressions, after setting q =O, are as follows: 

infinite depth: 

G (x, y, z; 5, O,(; 0, t) = 2 r[l - cos (vgk t)] ekY J,(kR) dk, 
0 

- I 
G,(x,y,x;E,o,c;o,t) =-2~sin(~t)ekYJo(kR)j/gkdk; 

(22.10) 

0 
depth 12: 

G(x, y, z; 6, 0, 5; 0, t) = 2J[1 - cos (lgk tanh kht)] w J,(kR) , 
I 

0 

M I ( 
22.1 

Gt(x, y,z;l,o,[;o,t) =-2[j/llgktanhkIzsin(j/gktanhkkt)~Jo(kR). 
d I 

where R2= (x - t)2+ (Z -c)z. 
There still remains to find @(x, y, Z, 0) where 

and 
lim CDy(x,y,z.O) =0 or @,,(x,-&z,o) ~0. 

y-+--o0 

The solution of these two problems is well known: 
infinite depth : 

@ (% Y> Z>O) = &/-J ~y;ayyz _ [)2]* dt dC 
-co > 

co (22.12) 

1 
=- 

2n 
SSll(i,e,o)did~~ekyJ,(kR)dk; 

--co 0 
depth h: 

@(x, y,z,o) =&j--q(&C,oi d~d+“;~~;;h’ J,(kRR)dk> (22.13) 
--oi) 0 

where R is defined as above. 
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608 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 22. 

Substituting the several expressions in (224, one obtains the expressions 
for the velocity potential: 

infinite depth : 

@(x,y,z,t) =~~~~~(~,P.O)dSdt~eRYcosotJO(kR)dk - 
-cc 0 

1 JTq(E,i,O) didcfceAYsinot Jo(kR) dk, (22’14) 
252 

-cc 0 

02=gk; 
depth h: 

The equations describing the free surface are as follows: 

infinite-depth : 

“17 (X> 2, 4 = & ~~~~(~.;.O)d~d~~~sin~t~o(kR)dk + 
-cc 0 

+z 
2ng 

J-,ce.c. 0) dCd+2cosot J,(kR) dk, (22’16) 
-cc 0 

a2=gk; I 
depth h: 

7 (x, 2, t) = 1 
2ng 

/J,(E,[, 0) d*dSIosincrt coth kh J,(kR) dk + 
-ccl 0 

+T~,~~~(~,‘,~)d~d~~~2cosotcothkhJ,(kR)dk, 
(22.17) 

-co 0 

a2 = gk tanh kh. 

It has been shown by KOCHIN (1935) that the integrals with respect to k in 
(22.16) can be evaluated. Consider the integral 

K = Tn-lsinct J,(kR) dk, 
b 

02=gk. (22.18) 

Then the first integral with respect to k in (22.16) is -K,, and the second one 
is - Ktft To evaluate K make first the following change of variables: 

G=kR, 02 = gt2/4R. (22.19) 
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Sect. 22. Initial-value problems. 

Then 

K =&jSin2wxJ,(xa)drc 

In the first integral let ~4 = welt +w, in the second let u =VX -W. Then 

and, after setting u =l/Zco sin Q 6, 

Finally, from an identity in WATSON’S Bessel functions [§ 5.43, Eq. (1)] one finds 

K(o) = +&c&wB~J_~($WP~. (22.20) 

In order to use the results in (22.16) one needs the first three derivatives with 
respect to t. Since 

a 1 ga 
=-r at 2 R Ax’ 

the derivatives can be computed by taking derivatives with respect to w and 
multiplying by an appropriate factor. After some rather tedious computation 
one finds 

-W2{J,(fOJ2)J,($02) - J-&(++(+Je))]. 
These are KOCHIN’S formulas, but derived somewhat differently from his original 
paper; still another derivation may be found in KOCHIN, KIBEL and ROZE (1948, 
Chap. 8, $21). Similar formulas for (22.17) do not seem to have been discovered. 

Handbuch der Physik, Bd. IX. 39 
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610 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 22. 

It should be noted that in the final form of (22.16) the dependence upon t 
is through the dimensionless variable c$= gta/4R. Hence, if one examines the 
contribution to the surface profile from a given locality, say the neighborhood 
of (E, 0, then a given phase of this contribution, say a maximum, will be described 
by gt2/4 R = const ; i.e., the phase is moving away from ([,[) with constant accelera- 
tion proportional to g. The amplitude of the contribution is modulated by either 
R-t or R-2 according as one is considering the first or second summand in (22.16). 
KOCHIN’S 1935 paper is of some methodological interest inasmuch as he started 
his analysis with dimensional considerations. This method will be introduced 
for the two-dimensional case. 

One may obtain without great difficulty series expansions for the K-integrals 
in (22.14) and (22.16), as was first done by CAUCHY and POISSON. We refer to 
LAMB’S Hydrodylzamics (1932, 3 255) for the derivation and exact expressions. 
They can also be derived from the the known expansions for Ja, etc., as can 
asymptotic expressions for large u). One may also carry out an analysis of the 
changing shape of the surface profile following the methods of Sect. 15. 

It is evident that one can solve explicitly other similar initial-value problems 
for which the GREEN’S function can be given. For example, the method of images 
allows one to give an explicit solution for various cases when vertical walls are 
present as boundaries. Such cases have been considered by RISSER (1925). The 
Cauchy-Poisson problem in the presence of a vertical half-plane, z =O, x> 0, 
has been treated by BOIKO (1938), but by more complex methods. 

Two dimensions. Rather than repeat the methods used for three-dimen- 
sional motion, we shall introduce a method making use of the complex potential 
and thus special to two-dimensional motion. It is analogous to the method used 
in deriving (13.28). 

Let f (2, t) = @ (x, y, t) +iY(%, y, t) be the complex velocity potential. The 
initial conditions will be taken in the form 

-$Ref,(x-iO,O$) =q(x,O), -Imf’(x-iO,O$) =q$(x,O). (22.22) 

Let us consider infinite depth first. For t> 0 we assume that f(z, t) is regular 
and 1 f’ 1 <M(t), 1 ftt 1 <M(t) for y < 0 and that both f’ and ftt approach zero as 
y -+ - co. Consider now the function 

G(.G t) = ftt(z, t) + igf’(z, t). (22.23) 

From the assumptions about f it follows that, for t>O, G(z, t) is regular for y<O, 
that lGj<B(t) for y<o and that G+O as y-t-co. Moreover, it follows from 
the condition at the free surface, (11.5), that Re G(x - i0, t) =O. Hence, the 
definition of G may be extended into the upper half-plane by defining 

G(x+iy) =-G(x-iy). (22.24) 

But then since G is regular and bounded in the whole finite z-plane, it follows 
from LIOUVILLE’S theorem that G =const ; the constant must equal zero from 
the assumed behavior as y+ - 00. Hence the fundamental differential equation 
for the Cauchy-Poisson problem in two dimensions is 

i&(.&t) +igf’(z,t) =o, t>o, (22.25) 

an observation usually credited to LEVI-CIVITA (cf. TONOLO, 1913). 
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Sect. 22. Initial-value problems. 

Let us now find the analogous equation for finite depth. The function f will 
be assumed regular in the strip 0> y > - k. The boundary condition on the 
bottom is 

Im f’(x - ih, t) = 0. (22.26) 

Hence f may be extended analytically into the strip - 2k< y< - ,% by defining 

f(X-i(y+2h))=f(x+iy), o>yz-h. (22.27) 

We may also, as before, extend the function ftt+igf’ into the strip lzz yz 0. 
The condition Re {ft,+igf’} =0 for y =0 implies Re {ft,--igf’} =0 for y = -2h. 
Hence the function fit--igf’ can be extended by reflection into the strip 
- 3 hs y 5 - 2h. Now consider the function 

ff(.% $1 = [ftt(z + ih, 4 + ftt(z - ik 41 + ig[fl(z + ik, t) - f’(z - ik i)] 
=(ftt(Z+ih,t)+igf’(z+ih,t))+{ftt(Z-ih,t)-igfl(z-iih,t)}. (22.28) 1 

As a result of the various extended regions of definition, one may verify easily 
that H is defined for all z in the strip - 212~ y < 0 and is regular there. Moreover, 
it follows that 

H(x-iih,t) =o; (22.29) 

for from (22.27) it follows that the two pairs of summands in the first form of 
(22.28) are real for z = x-ik, whereas from the boundary conditions at y =O 
and y = - 2F, it follows that the terms in curly brackets in the second form of 
(22.28) have zero real parts. Since H(.z, t) is regular in the strip 0> y > - 2F, 
and vanishes on y = - 12, it must vanish identically in the strip. Hence we have 
the following differential-difference equation of CISOTTI (1918) : 

ftt(z +ih, t) + ftl(z - ii% t) + ig[Y(z + ih, t) - f’(z - ih, t)] = 0. (22.30) 

Let us now turn to the solution of (22.25) with initial conditions (22.22). 
We shall follow closely an exposition of SEDOV’S (1948, 1957). However, the 
idea of the derivation is KOCHIN’S (193 5) and, in fact, really goes back to TONOLO 
(1913). The use of dimensional analysis can be extended to the three-dimensional 
problem; this was also done by KOCHIN. 

We first remark that the initial-value problem can be solved by solving it 
for two special cases of (22.22), namely, first with q (x, 0) ~0 and then with 
Q (x, 0) = 0. The sum of these two solutions will satisfy (22.22). Next we note 
that 7 (x, 0) has the dimension “length” and ~(x, 0) the dimension “velocity”, 
and that the solution f in each of the two initial-value problems will be 
proportional to some typical parameters associated with 17(x, 0) or Q(X, o), 
respectively. Let us suppose that a is such a parameter with dimension Lfi Tq 
and that f is proportional to a. Since f has dimension L2 T-l and g has dimension 
LT-2, the 17 theorem of dimensional analysis then states that f can be expressed 
as follows : 

f(2, t) = a.Pg@X (z), (22.31) 
where 

a=$-$-gq, /?=i(q$-1). (22.32) 

(The factor i/4 in the argument of x is chosen for later convenience.) Now substi- 
tute (22.31) into (22.25). One finds after some computation that 

ft,+ igf’ = iaZa--lgpfl[Cx”(T) + (Q - 5) x’(5) + ~41 = 0, (22.JJ) 
39* 
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612 JOHNV.WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 22. 

where c=igt2/4z. The differential equation obtained by setting the expression 
in square brackets equal to zero determines x in terms of confluent hypergeometric 
functions : 

x(C) =A&(- a,Q:5) +W~,F,(9-d;5). (22.34) 

From this it follows that 

f(z,t;a) =a~~g~[~lF,(-u,l,;-~)+B(~~lF;(~. -u&T 

“I 
(22.3 5) 

=Af,(z,t;u) +Bf,(.Gt;a). 

Remembering that 
14(y,6;0) =I, lF;(y,d;o) =y/B, 

one may easily derive the following: 

f(z,o) =Af,(z,O) =AagBz”, 
f’(z, 0) = A f; (2, 0) = A aag@z-1, 
ft(z,O) =Bf,,(z,O) =+BaiJgp+JP-4. I 

(22.36) 

The solution (22.35) may be further generalized by replacing t by t-t, and z 
by x-x,, (i.e., by a different choice of the dimensionless variable c). One may 
then further superimpose these solutions. For the purpose at hand it will be suf- 
ficient to retain t,=~. Then we may form the solution 

f (& t) =p (%) f& - Xo,t;a,)dx,-l-~U(x,)f2(s-x,,t:a2)dx,. (22.37) 

One finds from (22.36) that 

f (.G 0) = a, g@i$A (4 (2 - %p d%J, 

f’(z, 0) = a,cc,gP$4(x,,) (z - x,$@dx,, 

ft(z, 0) = ~a,i~g”@~+~~B(x,-,) (z- x,JC(B-~dx,,. 
--co 

(22.38) 

Let us now make some special choices of a, and hence of cx and /3. As a para- 
meter describing the initial profile of the surface take 

(22.39) 

as a parameter describing the initial velocity distribution take 

Then a, has the dimension L3 T-l, corresponding to a, = - 1, PI = 0, and a2 the 
dimension L2, corresponding to a2 = - i, p2 = i. With these choices of u1 and tc2 
in (22.37) we take 

Ah) =~j&>~)dE, 
-m (22.41) 

Bh) = -=%&I> 0). 
a2 n i” I 
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Then the last two equations of (22.38) become (after an integration by parts in 
the first one) 

From the Plemelj-Sokhotskii theorem we have 
03 

f’(x-io,o) =-iq(x,o) +;pv 
s 

rlt @%I) 0) 
x0 - x 

&, ) 

-cx 

/f(X-~o,O)=-g~(Z,O)+~Pv~_dr,. 
--ccl 

(22.42) 

Thus the initial conditions (22.22) are satisfied. 
There remains to point out that for the special choices of a, = - 1 and a2 = - Q 

the corresponding confluent hypergeometric functions in (22.3 5) may be expressed 
in terms of Fresnel integrals or integrals of these. In fact, if we write (22.37) 
the form 

f (6 4 = TQl (z- x0, t) j$ (& 0) dE ax, + s”Jz2 (2 - ~0, t) q (x0, 0) ax,, (22.43) 
--oo -cc -co 

then 

where 

(22.44) 

One should also consult the discussion in LAMB’S Hydrodynamics (1932, 
3 238, 239), where graphs are given which display the behavior of the surface 
profile corresponding to an initial elevation concentrated in the neighborhood 
of one point, i.e., essentially -g-r Q,, (x - i 0, t), and to a concentrated impulse, 
i.e., essentially -g-152,, (x - i 0, t). However, general aspects of the development 
of the surface profile have already been discussed in Sect. 15~. 

It should be noted that the velocity potential (22.3 7) represents a much wider 
class of time-dependent gravity-wave motions than does (22.43). The initial- 
value problems corresponding to other values of a have been determined by 
SEDOV (1948) but the discussion will not be repeated here. 

A class of solutions of (22.30) analogous to that found by SEDOV for (22.25) 
does not seem to have been given in the published literature. CISOTTI (1920) 
expands f (z, t) in a power series in t, thus replacing (22.30) by’s recursive set of 
difference equations. We refer to the original paper for his discussion of this 
set of equations. 

In (15.22) we have already given the velocity potential and surface profile 
corresponding to a given initial profile; the derivation was based upon a Fourier 
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614 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 22. 

analysis of the initial profile and the result was valid for either finite or infinite 
depth. The same procedure may be used for an initial velocity distribution. The 
combined result for the complex velocity potential and surface profile is given 
below in such a way as to include the possible presence of surface tension: 

infinite depth : 

~(z,2)=~~k~~~$[-o(k)q(~,O)sinoltli,ie.,0)coso~~z-~~, 
0 -co 

q (x, 4 = -; fik j% [q (Lo) 

’ (22.45) 

cos 0 t+ + qt (6, 0) sin o t] cos k (x-6)) 
0 -Ix 

where 

depth h: 
c+=gk -t Tk3/e; 

c-2 M 
f(.z, t) =;~dk~d[~-- 

k sinh k h ’ 
0 -cc 

x [- a(k)IjrK 0) sinat+~,(5,O)cosat]cosk(z--t++i), 

rj(x, t) =+fdkidex 
0 --co 

X [q (6, 0) cos 0 tf ph&iqt(E, 0) sin CT t] cos k (x-t), 
where 

~+=(gk+Tk~/~)tanhkh. 

’ (22.4.6) 

If T = 0, the coefficients of qt (6, 0) in the formulas for 11 (x, t) reduce to o-r. When 
T =O, (22.45) is, of course, another form of (22.43). 

It has already been indicated in Sect. 15 that the Cauchy-Poisson problem 
can also be solved for superposed fluids. SRETENSKII (4955) has investigated 

a further generalization in which the two fluids are each flowing with constant 
velocities for t < 0 and then when t = 0 a disturbance is suddenly created at the 
interface. 

y) Some other time-de$endent problems. It is possible to solve a number of 
initial-value problems either by using Eq. (22.8) or by using the time-dependent 
Green functions (13.49) or (13.53) d irectly. The special situations treated, below 
fall roughly into the following four categories: wave motions resulting from a 
pressure distribution suddenly brought into existence at time t =O; waves result- 
ing from a body set into motion at time t = 0; waves resulting from an under- 
water explosion or a sudden movement of the bottom (tsunamis); and waves 
resulting from an initially displaced freely floating body. 

Time-dependent pressure distributions. Suppose that the fluid is 
undisturbed for t<~ and that starting with t =O the pressure over the free sur- 
face is a given function 9 (x, z, t). The consequent motion of the fluid may be 
easily obtained, for this is just the problem formulatedin (22.2) if we put 7 (x, z, 0) = 
~jr,(x, z, 0) =o. Formula (22.8) then gives the velocity potential in the form 
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Sect. 22. Initial-value problems. 615 

In the two situations for which explicit GREEN'S functions have been given, 
Eqs. (22.10) and (22.11), we may give explicit solutions for @: 

infinite depth : 

@(%Y,z,t)=- 2i’, JJdtdc.15 (6, [, z) dr~~os(llgfi(r-t)) ekYJo(k R) k dk; (22.48) 
0 

(6, <, r) drr(cos vgk tanh k h (z-t)) x 
--w 0 0 (22.49) 

x%$$J,(kR)kdk, 

where, as usual, R2 = (x -t)” + (z -13~. 
The velocity potential for a moving pressure distribution is obtained from 

these expressions simply by letting 

If PO (6 - CT, 5, 4 = AJ (E - CT, 0 cos uz the resulting @ is the velocity potential 
for a steadily moving pressure distribution of oscillating strength. LUNDE (195 1 b) 
has investigated the special case when $ (l, [, z) =fi (I/([ - c -c)” + c2) and has 
shown that as t--+ 00 the expressions (22.48) and (22.49), after a change to moving 
coordinates, approach asymptotically to the expressions (21.26) or (21.3 1) properly 
modified for circular symmetry (the assumed symmetry is not essential). The 
computation is interesting but will not be carried out here. This procedure for 
obtaining (21.26) or (21.31) yields the velocity potential without necessitating 
the extra boundary condition requiring the motion to vanish as x-+ + 00. 

As was mentioned in connection with the solution of the Cauchy-Poisson prob- 
lem, the GREEN'S function for some other simple configurations can be found 
by the method of reflection. 

The complex velocity potentials for two-dimensional motion which cor- 
respond to (22.48) and (22.49) are as follows: 

infinite depth : 

f(z, t) = -$- fdtjfi (6, z) drfcos (j,@(z--t)) e--ik(z-e)dk; 

depth h: --O” ’ 
0 

(22.50) 

/(z:t) =~~d~~~(~,r)d~~os(~gktanhkh(-~-t))~~~~~~~~~~~dk. (22.51) 
--co 0 0 

Certain special cases have been investigated in more detail. STOKER (1953) 
[see also WURTELE (195 5)] has treated the motion resulting when a pressure dis- 
tribution constant in time for t>o is suddenly applied to a uniformly moving 
stream of depth h. The velocity potential may be obtained from (22.51) by tak- 
ing fi(5, r) =$,(E--cr) and t ransferring to moving coordinates. His aim, as was 
that of LUNDE in the computations described above, was to show that the po- 
tential (21.40) can be derived without a special assumption about its behavior 
as x++oo. The same can be carried through with (22.50) to derive (21.38). 
If one assumes fi (5, z) =pr (6) cos o-c +#,(t) sin or, then one may also derive 
(21.21) or (21.23) from (22.49) or (22.5 0)) respectively, as asymptotic expressions 
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616 JOHN V.WEHAUSEN and EDMUNDV.LAITONE: Surface Waves. Sect. 22. 

for large t without having to impose a radiation condition. VOIT (1957b) has 
investigated the surface profile for large t when $J (5, z) =p (z) for E< cz< c T, 
p(t, z) =O for 6zc-c or for -c>T. 

Waves resulting when a body is set into motion. Many of the problems 
solved in Sects. 17 to 20 by means of source distributions can be formulated as 
initial-value problems and solved by the same procedure if one uses the appro- 
priate time-dependent GREEN'S function. We shall consider briefly several 
examples, omitting details. 

In (19.28) the velocity potential was given for the motion resulting from an 
oscillator in a wall, described by (19.26). It was assumed there that a steady 
situation had been reached in which the motion was purely harmonic in the time. 
Suppose instead that the motion of the oscillator described by (19.26) is to start 
at t =0 and that for t<O the oscillator and fluid are at rest. It is easy to verify 
that the time-dependent velocity @(x, y, Z, t) potential is still given by (19.28) 
if for the GREEN'S function G one uses (13.50) with m = 1. The last term in (13.50) 
will give the transient aspects of the motion. For two-dimensional motion the 
time-dependent wave-maker has been considered by KENNARD (1949), who also 
gives an estimate of time necessary for the transient terms to die out. 

In (20.65) the velocity potential has been given for a “thin” ship moving 
with constant velocity c; it is assumed there that a steady state has been reached. 
Let us now suppose the same ship to move with velocity c (t), t > 0, but that it 
and the fluid have been at rest for t < 0. As in (20.64) we take a coordinate system 
moving with the ship. Then from (20.26) it follows that the velocity potential 
@(x, y, z, t) must satisfy the boundary condition 

A GREEN'S function enabling us to construct @ can be easily obtained from 
either (13.49) or (13.53). However, let us take c(t) =C, a constant, for t>O, i.e. 
we suppose the ship to attain instantaneously its final velocity. The GREEN'S 
function for this situation has already been written out explicitly in (13.51). 
Setting there u,, =c, a, =E, b, =q, c,, =c and calling the resulting function 
G(x, y, Z, 5, q, [, t), the velocity potential for the problem at hand is 

@ (% y, 2, t) = & G (x, Y, 2, t, 7, 0, t) F, (i, q) dE dq . (22.52) 

Having found @, one may then compute the force upon the ship and obtain 
formulas analogous to (20.67) or (20.69). The computations for infinite depth 
was originally made by SRETENSKII (193 7) ; LUNDE (195 1 a) gives an exposition 
of this result and extends it to include thin ships moving in an infinite expanse 
of fluid of depth k and down the center of a canal of width b and depth h. In 
these computations c is allowed to be an arbitrary function of t. We refer to 
LUNDE'S paper for the results. 

HAVELOCK (1948, 1949) has considered the accelerated motion of a submerged 
horizontal circular cylinder in fluid of infinite depth. The complex velocity po- 
tential is expanded in a Laurent series about the center, starting with a dipole. 
In order to satisfy the other boundary conditions, one makes use of (13.54) to 
obtain singularities of the proper sort. The boundary condition on the circle 
then yields an infinite set of equations for determining the coefficients in the 
Laurent series. After finding as many terms as seems necessary for a suitable 
approximation, one may compute the force on the cylinder. HAVELOCK has 
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carried this out for the first two singularities [a slight inconsistency in the ap- 
proximation is corrected in MARUO (195 7)] and h as made numerical computations 
for an impulsive start and for a constant acceleration. Consider an impulsive 
start with instantaneous acceleration to constant speed c, and let the cylinder 
have radius a and its center be submerged to depth h. Then the two leading 
terms in the resistance are given by R,, the steady-state resistance given in 
Eq. (20.52), and by the transient term 

Fig. 28, taken from MARUO (1957), shows (R, + Rl)/RO plotted against c t/h for 
c/lJsh=l. 

An exposition of the theory of accelerated motion of submerged bodies is 
given by MARUO (1957, Chap. 3). Both two- and three-dimensional problems in 
fluid of infinite or finite depth are 
considered. We note that the use 
of KOCHIN’S H-function may be 
extended with no difficulty to 
time-dependent motion; this has 
been done by MARUO and earlier 
by HASKIND (1946b). 

i4+4jE;, 

An investigation of PALM (1953) 
W 

also fits into the category of prob- 
cf/ 

50 

Fig. 28. 

lems under consideration. In con- 
sidering flow over an uneven bottom in Sect. 20a, it was necessary to impose 
an upstream boundary condition in order to obtain uniqueness if the velocity is 
subcritical. In order to avoid this extra condition he formulated an initial-value 
problem in which the fluid is at rest and the bottom suddenly starts to move. 
The asymptotic expression for large t in a coordinate system moving with the 
bottom agrees with the results in Sect. 20~. 

Tsunamis and submarine explosions. A tsunami is an ocean wave 
originating from a sudden upheaval or recession of the ocean floor. If one assumes 
an ocean of uniform depth h and if the disturbance occurs in a region S of the 
bottom, one may approximate this situation by the boundary-value problem in 
which 

@f&G - hJ z, 4 = 
V(x,z,t), o<t<T, (%,A-) in S, 

(22.54) 

If the time-interval of the disturbance is short (i.e., if gT2/h is small), the solu- 
tion for @ is given approximately by distributing over S sources of a form easily 
derived from (13.53). In fact, in (13.53) let a =E, b = -h, c =c, and let pm(t) = 
2m(&C-,t) =-Qy(t, -h,C, t)/2 n; denote the resulting function by as((x, y, z, 6, 
- h, 5, t). Then 

is the approximate solution. If one assumes V(x, .z, t) = V(x, z) for O< t< T, 
then !Ds takes the following simple form for t> T: 

x[coso(t-T)-cosotldk, 1 
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where a2 =gk tanh kk. If the deformation is assumed to take place so quickly 
that one may let T-+0 while keeping VT =L(t, [) constant (i.e., keeping the 
same total deformation), (22.56) becomes 

and the solution (22.55) is no longer approximate for the formulated problem. 
A further approximation may be obtained by assuming the area of disturb- 

ance to be so localized that one may assume the whole disturbance to originate 
at one point, say (0, --lz, 0). Then (22.55) b ecomes simply (22.5 7) with L replaced 
by Q=$.fLdE &- and R2 = ~2 + ~2. Although this may be a reasonable approxi- 
mation to the explosion of a mine on the ocean floor, it is not in general suitable 
for a tsunami since the diameter of the region of disturbance in the latter may 
be many times the depth of fluid. 

A comparison of (22.55), with (22.57) for Qs, with (22.15) shows that one 
may expect the same qualitative behavior for tsunamis as for waves resulting 
from an initial deformation of the free surface. In fact, if one makes the substitu- 
tion (22.19) in the expressions for the surface profiles, they become the following, 
respectively, for the initially displaced surface and the tsunami: 

One may study the development of ye along the lines worked out in Sect. 15 for 
two dimensions. 

Many of the investigations of tsunamis have been devoted to an examination 
of the profile for a given type of initial bottom disturbance. The classical papers 
on tsunamis are by SANO and HASEGAWA (1915) and SYONO (1936). They have 
recently been investigated by TAKAHASHI (1942, 1945, 1947), ICHIYE (1950), 
GAZARYAN (195 5) and others. Since the shape of the bottom and the configuration 
of the shore are of obvious importance in a geophysical application of the theory, 
much recent attention has been given to this aspect of the propagation of tsunamis. 
GRIGORASH (195 7a) has given a brief survey of the literature together with a sub- 
stantial bibliography. 

The waves resulting from an exploding submerged mine may be represented 
approximately by using the velocity potential for a source whose strength m(t) 
has the form of a square pulse of duration T. One may then determine di from 
either (13.49) or (13.53). If one assumes T very small and forms the limit as 
T+O while keeping m T = Q constant, one finds easily the following expressions 
for @: 
infinite depth: 

CLB=2Q~ek(“+“)Jo(kR)a(k) sinatdk, 8=gk; (22.59) 
0 

depth h: 

Q = 2 Q .I'COSh ",!E,+,"y;Jy;; + h) o(k)sinotdk, ~2 = g k tanh k h. (22.60) 
0 
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Again one may examine the development of the surface profile by the methods 
developed in Sect. 15. 

Investigations of waves generated by a sudden pulse of the above or similar 
sort have been made by LAMB (1913, 1922) and TERAZAWA (1915); both took 
the fluid to be infinitely deep. SRETENSKII (1950, 1949) has made a similar study 
when the source (two-dimensional) is situated on the bottom of a rectangular 
basin and within a fluid layer covering a solid sphere. SEZAWA (1929a, b) has 
included the effect of compressibility of the fluid. 

One should recognize that such studies can elucidate only a small part of the 
phenomena associated with underwater explosions. An investigation of the migra- 
tion and oscillation of the explosion bubble requires different analytical methods. 
Furthermore, if the explosion is too violent the linearized boundary condition 
on the free surface may not be a useful approximation. 

Freely floating bodies. The motion of a freely floating body following 
an initial displacement is of considerable interest and practical importance, but 
also leads to a difficult mathematical problem. Uniqueness of solution follows 
from the argument in Sect. 22~. For the sake of perspicuity let us restrict our- 
selves to motion constrained to be vertical, i.e., heaving motion. Then from 
(19.59) and (19.62) the boundary conditions to be satisfied on the surface of the 
body in its equilibrium position, S,, are 

%(x, Y, z,t) =jl(t) n,(x, Y, 4, (x9 Y, 4 on So, (22.61) 

MY, (4 + Q g IA yl(4 = - e JJ @Cl, q,i-> 4 ny (5, "JI> 0 do. (22.62) 
SO 

,‘;tlt?ace condition 
e notation is explained in Sect. ig/3.) In addition @ must satisfy the free- 

qL(% 0, z,t) + g @y (% 0, 2, t) = 0 (2243) 
and initial conditions, say 

~~((x,o,x,o)=~~(x,o,z,o)=o, (22.64) 

jtl(O) =hot YlW = YlO. (22.65) 

As in many previous cases one may reduce the problem to the solution of an 
integral equation by use of a GREEN'S function. In (13.49) replace (a, b, c) by 
(E, 7, C) and m (4 by y (t, q, 5,4 ; d enote the resulting function by CDs,: 

+ 2T(gh)d ek(y+q) J,,(kR)dk jy (t,q C, z) sin [(gk)J (t - z)ldz. 
(22.66) 

0 0 

We now attempt to express @ by the integral 

@(% y> 2, 4 = JJcps(% y, z,l, 17, c, 4 do, 
so 

(22.67) 

for then (22.63) and (22.64) will be satisfied. One should note especially that the 
relation of @ to y is more complicated here than in problems typified by (16.12), 
for the past history of y is involved in Gs. The conditions (22.61) and (22.62) 
now become 
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where 7 also enters into the equations through as. The two equations form a 
pair of coupled integro-differential equations for y and yi. It is evident that one 
can probably not hope for an analytic solution even for simple configurations. 

SRETENSKII (1937b), for two dimensions, and later HASKIND (194613) for three 
dimensions simplified the problem further by assuming the body to be “thin”, 
i.e., if the surface is given by z = f F(x, y), by replacing the boundary condition 
(22.61) by 

@$(% y> Ito, 4 = F +I(4 5 (X> Y) (22.70) 

and S, by the projection of S, on the plane z =0 [cf. (20.26) and (20.64)]. With 
this further assumption one can immediately satisfy (22.68) by taking 

Y(% Y> 4 = - &l(t) Fy(% Y). 

Eq. (22.69) then becomes an integro-differential equation for yi(t). 

(22.71) 

6 VYW 
Fig. 29. 

The procedure is open to some objection in that the substituted boundary 
condition (22.70) does not seem to fit into the general perturbation scheme as 
developed in Sects. IOU, 1%~ and 208. It is thus not clear what physical problem 
really corresponds to the mathematical problem. However, this seems to be the 
closest anyone has come to reducing the equations to a manageable form. SRE- 
TENSKII solved his resulting integro-differential equation numerically for a sur- 
face described by F(y) =I eafyl, where 

l=$=j.Xj cm, B =9=0.104cm-i. 

The resulting graph of yi/yr,, is shown in Fig. 29 with a dimensionless abscissa 
t Is@. In spite of the questionableness of the formulation of the problem, the 
graph is instructive in showing the difference between a damped harmonic oscilla- 
tion and the solution of SRETENSKII’S integro-differential equation. Approximate 
methods of solution to the problem which assume that the fluid motion at any 
instant is independent of its past history lead to damped harmonic oscillations. 

23. Waves in basins of bounded extent. The study of wave motion in a basin 
presents no special difficulties not already encountered earlier, and has a particular 
interest because of the many opportunities of observing such waves. Certain 
general aspects of the problem may be considered as being contained in earlier 
sections. For example, the general discussion of initial-value problems in Sect. 22~ 
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Sect. 23. Waves in basins of bounded extent. 621 

applies to motion in a basin, However, in order to make use of the results, in 
particular of Eq. (22.8), in constructing a solution, one must have prior knowledge 
of the time-dependent GREEN'S function for the geometric boundary. Although 
the method of images can be used together with (13.49) or (13.53) to construct 
the GREEN'S function for certain. simple configurations, an explicit analytic 
solution is generally not available. 

The time-dependent problem has also been approached in another manner 
by HADAMARD (1910, 1916), who derived an integro-differental equation for 
the function 11(x, y;t) describing the free surface. HADAMARD’S short notes have 
been worked out by BOULIGAND (1912,1926, 1927) and developed further. Certain 
of BOULIGAND’S investigations indicate that singularities which may occur at 
the intersection of the plane y = 0 v&h the basin walls are a result of linearizing 
the free-surface boundary condition. For an exact statement one should consult 
the original papers, There is a brief treatment of HADAMARD’S equation in 
VERGNE (1928, 3 10, 14). MOISEEV (1953) has developed a treatment of the 
time-dependent problem which generalizes somewhat the method used in Sect. 23 cc. 

In Sect. 23~ we give some general theorems concerning motions periodic in 
time, and another solution of the initial-value problem. In Sect. 23 /? wave motions 
for several special configurations of the boundary are given. In Sect. 237 the 
theory of wave motion in movable basins is considered. 

a) Periodic waves in basins: general theorems. If the motion is periodic in time, 
the velocity potential may be found by solving a Fredholm integral equation, 
obtained after introduction of an appropriate GREEN'S function. Assume 
@ (x, y, x, t) = p (x, y, Z) cos (ot + r) ; then v must satisfy the boundary conditions 

31y(%O,X) --yy(%o,x) =o, (x, .z) in F, Y = o”/g, 

ys=O, (x,y,4 on S, 1 
(23.1) 

where F is the part of the plane y =O occupied by the free surface at rest and S 
is the surface of the basin. Let G(x, y, z, 5, v,[) be the GREEN'S function for 
NEUMANN'S problem, i.e., 

G=$+G,, 

where G, is regular in the region occupied by fluid and G satisfies the conditions 

G,=c on S, Gy (x, 0,~ E, q, 5) = c on F, (23.2) 

where c is an arbitrary nonzero constant. In addition, in order to make the 
definition of q~ unique we require 

s&9,d@=o. 

It then follows from GREEN'S theorem that 

If one now lets y-+0, one obtains 

(23 4 

a homogeneous Fredholm integral equation for ~((x, 0, z). If v (x, 0, Z) can be 
found, then p’(x, y, Z) is determined by (23.2). From the theory of such integral 
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622 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect.23. 

equations there will exist a sequence vi, v2, . . . of eigenvalues for which (23.4) 
will yield solutions 9,) y2, . . . . The functions pi corresponding to different vi-s 
are orthogonal on F, as shown in (16.10). If several vi-s have the same value, the 
corresponding vi-s can be orthogonalized. The pi also form a complete set on F. 
Each solution p?i yields a standing wave in the basin. 

It is possible to use these solutions to solve the initial-value problem formulated 
in (22.2), but with $ =O. Let q (x, z, 0) and ~(x, z, 0) be given. We try to express 
@ (x, 0, z, i) in the following form: 

@ (x, 0, 2, 4 = 2 ai g4 (x, 6.4 cos CT~ t + b pi (x, 0, Z) sin oit. (23.5) 
i=I 

Then 
-gg(“t 2, 0) =@g(x, 0, z,O) =~~ibi~~(XtO,z), 
- gQ(X, Z,O) = CDti(X, O,Z,O) = - xUfaivi(%, 0,X). 1 

(23 4 

Since the q% form a complete set of orthogonal functions over F, the coefficients ai 
and bi can be determined in the usual manner. @(x, y, z, t) is then determined 
by (23.5) ad (23.3). 

In order to use the integral equation (23.4) one must first find G, the GREEN’S 
function, to a Neumann problem for a region having a corner along the curve of 
intersection of the plane y = 0 and the basin walls. The difficulty with the corner 
can be overcome in certain cases. If the basin wall intersects the plane perpen- 
dicularly, then the basin plus its reflection in the plane y =0 has a boundary 
without this corner. If y (x, y, z, 6,~, 0 is a GREEN'S function for the Neumann 
problem for the extended region, then 

G(x, Y, x,l,q, 5) = g [y lx> Y, x, 5,q, 5) + y (x, - Y, z,5, q, t-)1 (23.7) 

is a GREEN’S function for the original region. For some other special regions one 
may construct a GREEN'S function by the method of images, even though the 
intersection with the plane y =0 is not perpendicular. 

As mentioned above, each pli represents a standing wave of frequency oi. 
It may happen, as we shall see presently, that two or more oi-s are equal. Let cr 
be such an eigenvalue and v(l) and 9 @) two of the corresponding potential func- 
tions. By forming the standing-wave solution. 

[A, $1) + AZ lp’] cos ot , s + 12 = 1, (23.8) 

one may vary continuously the position of the nodal curves, say. If PZ independent 
vi correspond to o, then the possible nodal curves form an (PZ- I)-parameter 
family of curves in F. With the two solutions q(l) and v(z) one may also form 
the solution 

@ (x, y, 2, t) = q(l) (x, y, 2) cos u t + I$~) (x, y, 2) sin o t . (23.9) 

The nodal curves will now migrate from those of v(l) to those of vc2), and then on 
again to those of v(l). If pi(l) and 9 (2) have a common zero at, say, (x0, z,J, then 
a nodal curve for @ will always pass through (x0, z,,). Near (x0, z,,) the waves 
will appear to progress about (x,, zO) like spokes moving about a wheel. There 
may, of course, be several such centers. 

p,J Some special boulzdaries. It is possible to give explicit solutions for standing 
waves for several particular configurations of the basin. The variety of such 
configurations, however, is rather small. As a preliminary we note that if the 
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basin has a flat bottom at depth F, and if the side walls form a vertical cylinder 
making a section C with y =0 then, from Sect. 13a, we have 

@ (x, Y, 2, t) = pl (x, 4 co& m, (Y + h) ~0s (ot + z) , 

m,tanhm,h-$=o, 
I 

(23.40) 

where 9 (x, .z) is a solution of 
vkx+9h+m,2p? = 0 (23.41) 

satisfying 
vfi=OonC. (23.W 

The boundary condition (23 .I 2) will limit m, , and hence o, to a discrete sequence 
of eigenvalues 

rn$+), mh2), . . . ; 0,) oz, . , . . (23.43) 

In a coordinate system in which (23.11) can be separated it is usually possible 
to find the standing waves in basins whose side walls are constant-coordinate 
surfaces. These statements will be illustrated below for rectangular and cylindrical 
coordinates. 

In connection with the special cases treated below we call attention to papers 
by HONDA and MATSUSHITA (1913) and SASAKI (1914). The authors investigated 
experimentally in a systematic way the various modes of motion in rectangular, 
triangular, circular, ring-shaped, circular-sectorial and ring-sectorial basins and 
compared measured with calculated periods. In most cases the agreement is 
with 2 % . Photographs showing the various modes were obtained by sprinkling 
the surface with aluminum powder and exposing a photographic plate for about 
one period. The nodes then show up as dots, the rest as streaks. In connection 
with a study of the excitations of waves in a port, MCKNOWN (1953) has also in- 
vestigated experimentally the standing waves in circular and square basins; 
some striking photographs are included. APT& (1957) has studied further the 
theory of the excitation of standing waves in a square basin and has also given 
experimental results. Perhaps the first theoretical investigation was by RAY- 
LEIGH (1876, pp. 272-279) ; he compared his predicted frequencies with observa- 
tions of his own and of GUTHRIE (1875). 

Rectangular basin. Let the basin walls be given by 

x = 0, x = 1, 2 = 0, z = b, y=-h, 

Then from (13.6) one may write down immediately the solution 

@=A coshm,(y +Jz) cos~xcos~zcos(at +z), 

mi=zz($+$), $=m,tanhm,la, $,4=0,1,2,.... (21”4) 

Thus the choice of the integers p and q determines m. and then o. If the basin 
is square, i.e., 1= b, then the same values of m, and o may correspond to two 
different solutions obtained by interchanging $ and q, assuming fi + q. However, 
this may also occur for other rectangular basins if b and 1 are commensurate. 

Circular-cylinder basin. Let the basin have radius a. Then from (13.8) 
we find the solutions 

@=Acoshmo(y+k)J,(moR)cos(~a+6)cos(ot+r), rt=0,1,2,..., 

J,‘(m,a) =O, $=m,tanhm,lz. 
(23.15) 
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Thus m, must be selected so that m,a is one of the zeros of J,’ ; this then deter- 
mines a. For ‘yz = 0 the wave crests and nodes lie on concentric circles, the number 
of such nodal circles depending upon which zero of J,’ is used to determine m,. 
If a 2 1, then to the same a there correspond two independent solutions (6 =o, 
6 = &3t), and the remarks made in connection with (23.8) and (23.9) apply. 

The standing waves in a basin shaped like a sector of a circle may be obtained 
from (13.8). If a, is the angle of the sector, then 

JA(moa) = 0, 
a0 

$ = m,htanhm,h. 

If the basin is ring-shaped, with inner radius b and outer radius a, then from 
(13.8) one finds [cf. SANO (1913), CAMPBELL (1953)]: 

CD = A cash m, (y + h) [Y,‘(m, b) J, (m,R) - 

- X (m,b) k;, (m&)1 ~0s (%a + 4 ~0s (at +4 , 

Y,‘(md)J,‘(m,a) -f(mob)Y~(mo4=O~ (23.16) 

02 - = m,h tanhm,h, 
g 

n=O,l,.... 
/ 

Formulas for sectors of a ring may be obtained and are similar to (23.15). 
Basins with sloping side-walls. There are very few explicit solutions 

known when the sides are not vertical. If the basin is a horizontal cylinder 
bounded at either end by vertical walls at, say, x = 0 and z =I, the theory of 
progressive waves in canals, developed in Sect. 18y, can be carried over with 
only small changes, namely replacement of cos (kz -ot) by coskz cos(at +t) 
where now k is restricted to the values nn/l and a correspondingly. Thus (18.39) 
and (18.43) give the velocity potentials, after the indicated modifications, for 
various modes of oscillation of a fluid in a basin of triangular section whose sides 
form an angle of 45” with the horizontal. However, even though these formulas 
may be used also for the two-dimensional modes, when k =O, they do not give 
the gravest two-dimensional mode except by a limiting process [described, e.g., 
in LAMB (1932, p. 443)]. 

The two-dimensional modes of motion in triangular basins whose sides form 
an angle y = mn/n with the horizontal may also be studied by use of the methods 
introduced in Sect. 17/3 for standing waves on beaches. Indeed, it is apparent 
that KIRCHHOFF (1879) considered his investigation of waves on beaches as a 
preliminary to the problem at hand. Because his approach is systematic we shall 
describe it. 

In order to use the results of 177 we take one side as y = - x tan y, i.e., 
z =r eir; let the other side be given by 

2=2a--reiy. (23.17) 

zir the complex potential f ( z must satisfy not only (17.31) and (17.32), but ) 

f(2a-re+) =f(2a-Ye-+), (23.18) 

which, taken with (17.31), implies that 

f(z) =f(ze-i4Y+2ae-i2Y(I - eb”Y)). (23.19) 
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In order to satisfy (17.31), (17.32) and (23.19) KIRCHHOFF first takes 

f(z) = B,$z”+ ... + B,+,zhfh. (23 33 

Substitution in (17.32) yields (with ,8 =ee2$Y as before) 

--iv 
I--‘=o, Blzfl=- ‘+p” B 

P&+1 l--p+1 *’ 1+p+k=o. (23.21) 

Thus, since y=rnzl~~, one must have F,=$n, p=O, 1, . . . . and k=&z=q, an 
integer. If one takes fi =O, then (23.20) becomes 

f(z) =B,{l+~&+~~coty,..cots~}. (23.24 

Conditions (17.31) requires B, to be real. Condition (23.18) or (23.19) remains 
to be satisfied. The function f(z) in its assumed form, is apparently overdeter- 
mined, and it is possible to show that for q> 3 not all conditions can be satisfied. 
For q = 2, m = 1 and q = 3, m = 1, (23 .I 8) can be satisfied. The potential functions 
are as follows: 

y = 7c[4: 
f(z) =B,[I-((~+~)Yx+&~v~z~] =+iB,,(v~-1+i)~ 

I 
m21) 

=B,[(l-vzx)(l+vy)-iiv(x+y)(I-V(X-y))], a=l/v,h=l/v; 

y = n/6: \ 

f(z) = B,[i - (l/S +i)vz ++(I +i~~)v2z2- +iv3z3] 

=- +iB,[2 +i(vz-1/T +i)3] l (23.24) 
=-QB,[~+(YY+~)[(YY+~)~--((Yx--~)~I + 

+i(vX+Yyl/~)(YX-vyl/~-22l/~)(vX--1/~)], a=p/v,k=l/v. 

Here k is the depth of fluid at the deepest point. The surface profile for y =45” 
is a straight line, for y =30” a parabola. 

In order to find the higher modes of oscillation KIRCHHOFF returns to the form 
(17.33) for f(x). It then follows as before that (17.34) must hold and that PZ 
must be even, say 2q. Now, however, instead of taking 3L =l it is left to be 
determined by (23.19). Substitution of (17.33) into (23.19) gives 

A kf2 = A, eXp[i 2iZYU,8k+1(i - /?)I, k=o,l,..., m-3. (21.25) 

Altogether there are then n - I+ n - 2 =2n -3 independent equations to 
determine A,, . . . , A,-, and also il and va. Again the conditions can be satisfied 
for y = n/4 and y = z/t/6. 

The solutions for y = ~14 are as follows, where C is an arbitrary real constant : 

f(z) = C [cos Av (z - a (I - i,) + cash vjl (x - a (1 - i,)], 
iZ=cothilva=-cotilva; 

f (2) = C [cos ilv (z - a (1 - i)) - cash ilv (z - a (1 - i))] , 
t 

(23.26) 

il = tanh3Lva = taniZva. 

The values of il and v can easily be determined graphically. For the first set of 
solutions the values of diva will be slightly more than 32214, 72214, . . . , for the 
second set slightly less than 7n/4, 11 z/4,. . . These two sets of solutions correspond, 
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626 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 23. 

respectively to (18.39) and (18.43) with k =O; the eigenvalues L may be identi- 
fied with mi/v and lzz/v, respectively. KIRCHHOFF and HANSEMANN (1880) carried 
out an experimental investigation of the first three antisymmetric modes [Eq. 
(23.23) gives the first one] ; they compare frequencies and positions of maxima 
and minima. The agreement seems satisfactory, although corrections for surface 
tension were necessary for the two higher modes. 

The solution for y =30” is the following: 

f(z) = C[~eei”.[z-.l+~e-“~~[~-~l+ 

+’ a+1 
eiplv[z-a-p%] + a 1 1 e-iplv[a--n--B’al + 

+ T$Te- 
i~lv[a-a-pal + 1 

a-1 
eignv[z-a-j?a] 1 , 

(23.27) 

where C is an arbitrary real constant, ,8 = *(I -i IT), ,52=-j?=- + (I+ i 1/~), 
and the eigenvalues for il and v are determined by the equations 

a2-- 1 -=- 
a 

]lIcotava, y=-i(1+/qcotpava, 

++i(l+B)COtpava. 

(23.28) 

If il is a solution of (23.28), then also - 1, A; /3J and /?A are solutions. There 
exists a real solution which may be found from the equations 

cash fi2va = 2secilva - cos3Lva, I”= 
sinhl?Ava- IisinLva 

-- . (23.29) 
cash 1/51va - cosAva 

The other solutions which may be generated from these do not lead to expres- 
sions different from (23.27). The first eigenvalue for ilva is a trifle to the right 
of 322/2. The form of the free surface corresponding to (23.17) is given by 

Y/(X,t) =$c{$+osav(z-a) + 

+[’ A+$ 
e&@AvX + 1 

a-1 
e-+V~~~x 1 cos+9~v(x - 2a) + 

+[’ a+1 ,-gysnv(x-za) + ~eblsi.(~-2~i]cos~~yx}sin(~~+t). 
I 

1 (23.30) 

Note that (23.24) and (23.27) both give only symmetric modes. MACDONALD 
(1896) states that antisymmetric modes, if they exist, cannot be represented in 
the assumed forms (23.20) or (17.33). 

VINT (1923) has succeeded in finding an infinite number of modes of motion 
in an inverted four-sided pyramid, each of whose sides makes a 45” angle with 
the horizontal, We refer to the original paper for the exact formulas. 

Additional solutions have been obtained by inverse methods by SEN (1927) 
and by STORCHI (1949, 1952). STORCHI’S result, although restricted to two- 
dimensional motion, is neat. Suppose that the form of the free surface is given 
as 17(x, t) =r (x) sin(ot +r) =F’(x) sin(ot +z), where F(x) is analytic. Then, 
since V(X) =og-lq(x, 0) and qY(x, 0) =vp(x, 0), 

f’(x --iO) = pn(X, 0) - if&(x, 0) = plx(x, 0) - ivy(x, 0) = “- [F”(x) - ivF’(x)] 
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and 

f(x-i0) =$-[F’(x) -ivF(x)] +const. 

We may take the constant as zero and write 

f(X$iY) =$[F’(x+iy) -iivF(x+iy)], P3*31) 

where F(z) is the analytic function determined by F(x). From this we have 

qJ(x,y) = ${F’(x+iy) +F’(x - iy) - iY[q -tiY) +qx - iY)l}, 

y(x, y) = ~{i[F’(x+iy) +F’(x-iy)]--Y[F(x+iy) +F(eiy)]}. 
1 

(23.32) 

Any streamline, defined by y) =real const, can now be taken as determining a 
possible basin shape corresponding to the assumed standing-wave profile. STORCHI 
applies the procedure to several special choices of F. An obvious disadvantage 
of this method, as well as of SEN’S, is that only one mode of motion is obtained 
for a resulting basin shape. 

y) Waves zh movable basins. In several preceding sections, especially 19 and 
22y, we considered the wave motion occurring in the presence of an oscillating 
body when the fluid is exterior to the body. One may attempt analogous prob- 
lems when the fluid is situated inside the body. Such problems occur in many 
situations of practical interest, for example, the sloshing of oil in a partly filled 
compartment of a tanker and the sloshing of fuel in an airplane or rocket. In 
each of these cases interest centers upon the dynamics of the whole system as 
well as upon the effect upon the walls of the container. A further interest in such 
problems arises from the interpretatipn of the experiments on standing waves, 
referred to earlier, carried out by HONDA and MATSUSHITA (1913), SASAKI (1914), 
and KIRCHHOFF and HANSEMANN (1880). The results were intended for compari- 
son with theoretical prediction of standing waves in fixed basins. The waves were 
actually generated by oscillating the basin and finding the frequencies at which 
resonance appeared to occur. 

We shall not consider the most general motions of the basin consistent with 
linearization of the free surface conditions, but shall limit ourselves here to a 
particular problem with small horizontal oscillations. In Sect. 26~t small vertical 
oscillations of the basin will be considered. The general problem of motion of a 
body containing fluid with a free surface has been treated by MOISEEV (1953) 
and NARIMANOV (1956, 1957). However, both are primarily concerned with small 
oscillations. KREIN and MOISEEV (1957) have also considered certain mathemati- 
cal aspects of this problem. OKHOTSIMSKII (1957) and RABINOVICH (1957) have 
considered the special case when the fluid is situated in a vertical, or almost 
vertical cylinder; NARIMANOV also gives special attention to this case. (Publica- 
tion of the work of these three authors was apparently delayed; it is stated that, 
for the most part, it was carried out independently of and prior to MOISEEV’S 
papers.) A particular problem, the one discussed below, was treated by SRE- 
TENSKII (1951) and later by MOISEEV (1952a, b, 1953). Two later papers by 
MOISEEV (1954a, b) apply the theory to engineering problems, especially ships. 
Waves resulting from a special type of forced oscillation of a rectangular tank 
have been studied by BINNIE (1941) and TAMIYA (1958). A problem somewhat 
related to those of this section is the motion of a freely floating body in a fixed 

40” 
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628 JOHNV.WEHAUSEN and EDMUNDV.LAITONE: Surface Waves. Sect. 23. 

bounded basin (there is now no dissipation of energy as in the problem treated 
at the end of Sect. 22~). This problem has been dealt with by PERZHNYANKO 
(1956) and MOISEEV (1958). 

Waves in a basin with elastic restoring force. Consider the configura- --- 
tion shown in Fig. 30. The coordinate system OXY is fixed, the system OXY 
moves with the carriage. Let x0(t) =Oo, I+,=&,. The bottom of the fluid is 
at 7 = - h, the side walls at Z = & a. The motion will be taken as two-dimen- 
sional. Denote the mass of the carriage, per unit width, by m,, that of the fluid 
by mf and the total by m =nz,+m,. Let the spring constant be mk2. We sup- 

pose as usual that the motion 
may be described by a 

- 
@’ 

velocity potential @ (x, y, t). 
Following the notation at the 
end of Sect. 2, let 3 (X, y, 1) 
describe the motion relative 
to the basin, i.e. 

@ 6% y, 4 

Fig. 30. =m(z,jj,t) +24,x. 1 
(23.3 3) 

We shall assume that x0 and u0 are both small, and of the same order as 6, 
i.e., in the notation of Sect. IOU, we assume expansions of the form 

xg = & xp, ug = Et@, 

&&)+E2cj%2)+.... 1 
(23.34) 

We omit the formal details of substitution of the perturbation series in the exact 
boundary conditions. They lead to the following linearized boundary conditions 
for 8: 

S&, 0, t) + gci$(~y, 0, t) -I- i&z = 0, 

&(&a,ji,t) =o, 

I 

(23.35) 

6g(Z, -h, t) = 0. 

The pressure, after discarding higher-order terms, is given by 

# =-Q@b=-Q[~+z;oX]. (23.36) 

The motion of the carriage is determined by the equation 

m~j;0=Jficos(~,Z)ds-mk2xo, (21.37) 

where the integral is taken over the wetted surface when the system is at rest. 
Substitution of (23.36) gives 

mZ,,=--JSlds-mk2x, 
0 a= 

= - e_S, $+%dXdy - mk2xo. 
I 

(23.38) 

[Eq. (23.38) is also a direct consequence of conservation of momentum.] 

See separate file errata.pdf
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Sect. 23. Waves in basins of bounded extent. 629 

The velocity potential z and the displacement x,, must be determined together 
from Eqs. (23.35) and (23.38) and either initial conditions or the further assump- 
tion that the motion is harmonic in t. 

As a preliminary we shall first suppose that the basin motion, i.e. x,,, is given, 
so that only (23.35) need be satisfied. One may try separation of variables and 
express 6 in the form 

3 = 2 T, (t) X, (2) Y, (7) . (23.39) 

LAPLACE’S equation and the last two condition of (23.35) are satisfied by 

X,,Y,,=cos~nxcosh~-(7+/z), 

X Y,,,+,=sin~nicosh~n@+h). 2n+1 

In order to find the corresponding T,, expand x in a Fourier series: 

x = jj (-I)w-G$F2- sin * 27 x 
F%=O 

and substitute (23.39) and (23.4.1) in the first condition of (23.35) : 

zs 
i:,,cosh~~7CFu~T2raR.~~~sinh~-~;Zh 

I 
cos::, x + 

+%zo[ T2s+1 cash -2GzL n h + T2n+l g -!+:L n sinh y n h 

+ ;;b (- 1)” (z&+n3m] sin -JyGL 55 x = 0. 

Let us set 

+ * (23.42) 

o2 =gn-N-tanhT~mnh n 2a 2a 
) b2n+l=-(-l)12- 2a (272 + I)2722 sech -2$~ z h. (23.43) 

(23.40) 

(23.41) 

Then Eq. (23.42) yields the infinite set of differential equations 

(23.44) 

The solution of the first set, T,, = A,, cos (02,t + z2J, is independent of the mo- 
tion of the basin and yields the symmetric modes of oscillation in a fixed basin. 
The solution to the second set may also be found by elementary methods, but 
will not be given here. However, we note that, if x0 is harmonic, it confirms that 
resonance occurs at the frequencies of the asymmetric modes for a fixed basin. 

We now turn to the joint solution of (23.35) and (23.38). Substitute (23.39) 
into (23.38). Then, after evaluating the integral, one finds 

O” (-1)” 
m 2, + $2 2 -~~-~ sinh ?!$ 

n=O 2n+1 
nhh2n+l+mk2~o=o. (23.45) 

The Eqs. (23.44) and (23.45) t a k 
and the T,. 

en together may now be used to determine x0 
If we formulate an initial-value problem by requiring, say, 

x0(0)= cot &(O)= 0, q(q, o)=o, g(%,y, o)=o, (23 .W 
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630 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect.2J. 

then the Tz, are all zero and the T211+l and x0 must be determined from the dif- 
ferential equations. As usual, one looks for a solution in the form 

x,, = c eFiwt, T2R+1 = d2n+l eviwt, (21.47) 
where both c and d2n+l may, of course, be complex. Substitution in (23.44) and 
(23.45), followed by elimination of dsn+r, y ields the following equation for deter- 
mining 0: 

W2-kZ=~ 
co 

2nf1 ----tanhanhA-. 
~-J$lztl (23.48) 

Fig. 31. 

One may find the solutions graphically by plotting each side of the equation as 
function of 09. Fig. 31 gives a qualitative idea of the distribution of solutions 
cog, q, . . . . As-~,w;,+~--;,+~ -+O; this fact, which can be proved analytic- 
ally and which seems clear from Fig. 31, would not have been so evident if we 
had divided (23.48) by ~04 before plotting. A point of importance is that there is 

Fig. 32. 

no intersection for uP<O; as a result the motion is stable. This may be proved 
as follows. Since x-r tanh x5 I, the right hand side of (23.48), for w2<0, is 
greater than or equal to 

&+ nz co2=mfcu2>co2 . (23.49) 
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Hence the line ~2 - ks lies below the left-hand branch of the curve for h2 2 0. 
The eigenvalues COG depend upon the parameters K2, 2a/h and 2 ~a h/m =mf/m. 
Fig. 32 from MOISEEV (1953) shows the dependence of the fundamental mode o,, 
upon 2 a/h for two values of mJm and k2 = I. 

The general solution for x,, and T2n+l is 

x0(t) = Re 2 c, e-iw8t, T2n+l(t) = Rez d2fl+l,s ediwat. (23.50) 
s=O s=o 

The solution of the initial-value problem formulated in (23.46) will not be com- 
pleted. It involves solution of infinite sets of linear equations. Approximate 
solutions can be obtained by considering only a finite number of equations and 
variables. 

The general theory of stability of such systems is discussed in MOISEEV’S 
1953 paper. In an earlier papers (195213) he studies the special case of a basin 
containing fluid and serving as the bob of a pendulum. If the suspension is by 
a parallelogram linkage, so that the container moves parallel to itself, the motion 
is always stable; if the suspension is by a rod rigidly attached to the container, 
the motion may be, under certain circumstances, unstable. 

The last cited paper by MOISEEV describes briefly the results of an experiment 
with a pendulum; the measured and computed fundamental frequencies for the 
two systems of suspension agreed with 0.1%. 

24. Gravity waves in the presence of surface tension. Apparently the first one 
to investigate the theory of waves in a fluid acted upon by both gravity and 
surface tension was KELVIN (1871 a, b). However, many of the essential features 
had been discovered earlier through observation by RUSSELL (1844) and others; 
references may be found in KELVIN’S papers. A good account of the classical 
researches of KELVIN and RAYLEIGH may be found in LAMB (1932, $265 to 272). 
Also, Chap. XX of RAYLEIGH’S Theory of Soured (Cambridge 1929; Dover, N. Y., 
1945) contains an exposition of many of his own fundamental researches on sur- 
face-tension phenomena, including waves. 

The chief mathematical complication added by the ,action of surface tension 
is a somewhat more elaborate dynamical boundary condition at an interface 
or free surface. The difference of primary physical interest lies in the existence 
of a minimum wave velocity and of two wave lengths with the same velocity. 
Many of the special problems considered in preceding sections can also be solved 
when surface tension is acting. However, there has been little motivation for 
carrying through such analyses for wave motion associated with solid boundaries, 
since it has been recognized that the additional forces would be small. A further 
difficulty also appears when the solid boundary pierces the surface, for an addi- 
tional boundary condition is required at the intersection. As a result, most 
of the investigations have dealt with waves analogous to those considered in 
Sects. 14a, ,B and 6, 15, and 228. In fact, the complex velocity potential for 
the Cauchy-Poisson initial-value problem including the effect of surface tension, 
has already been given in Eqs. (22.45) and (22.46). A topic of particular geo- 
physical interest, the stability of an interface, will be dealt with in Sect. 26. 
Waves on the surface of a viscous fluid, including surface tension, are considered 
in Sect. 25. 

Boundary conditions. The linearized conditions to be satisfied at the 
interface of two fluids have already been given in Eqs. (10.7) and (10.8) (we recall 
that subscript 1 refers to the lower fluid). If one eliminates 17 from these two 
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632 JOHN V. WEHAUSEN and EDMUND V. LAITONE: Surface Waves. Sect. 24. 

equations and makes use of the fact that LAPLACE’S equation is satisfied on 
either side of the boundary, one has the following condition: 

AQl=o for y<O, A@,=0 for y>o. (24.1) 

“Ilt(% 2) = @&, 0, 2, t) = @2y(% 0, 2, t) > (24.2) 

el[~llr(x~o,~,t)+g.~l,+~~~"TY]=e2[~*11+g~~yl. (24.3) 

If the upper fluid is absent, one sets ez and cD~ equal to zero and may, of course, 
drop the subscript. 

If the motion is two-dimensional one may introduce a stream function Y 
and a complex potential F(z, t) = @ +(y and express (24.2) and (24.3) as follows : 

~t(~)=ImF~(x-~O)=ImF~((x+iO), (24.4) 

Reel F,,,(x--iO)+igF;--~F;“)=Ree,~~~,,(x+iO)+~g~~}. 
{ 

(24.5) 

If the upper fluid is absent and if the lower fluid is infinitely deep, one may 
extend the reasoning which led up to LEVI-CIVITA’S differential equation (22.25) 
to derive the following one which must be satisfied for all x: 

F,,(z,t)SigF’-i%F”‘=O. (24.6) 

Furthermore, if the fluid is of constant depth h, CISOTTI’S equation (22.30) may 
also be extended to include the effect of surface tension: 

F,,(z+ih,t)+F,,(.z--ih)+ig[F’(x+ih)--F’(x--ih)]- 

-i$[F”‘(z+ih)-F”‘(z-ih)]=O for -2h<y<O. 
(24.7) 

Elementary solutions. Let us suppose first that only one fluid is present, 
and in addition that 

@q% y, 2, t) = qJ (x, y, 2) 03s (0 t + t) * 

Then 91 must be a potential function satisfying 

-~22((X,0,Z)+g(py+~~yyy=o. (24.8) 

Just as in Sect. 13a, we may separate out the y-variable and obtain the follow- 
ing expressions : 
infinite depth: 

where 

and 

depth h: 

where 

and 

(24.9) 

(24.10) 
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Sect. 24. Gravity waves in the presence of surface tension. 633 

One may also with no difficulty construct solutions analogous to (13.3) and 
(13.4), namely 

cp(x,y,x) =A[m(l-$m2)cosmy+$sinmy]y(x,z) (24.11) 

and 
V,(%Y,4 =Acosmi(Y+h)p,(%.4 (24.12) 

for infinite and finite depth, respectively, where nz, in (24.12) must satisfy 

cr2 = --gm,+ +m,8 ! 1 tan+h 

and ~((x, z) must be a solution of 

A 2cp-m=ql=0. 

Unfortunately, the set of function 

{cash m. (Y + 4 , ~0s mi (Y + h)} 

is no longer orthogonal in general, so that the convenience of general solutions 
like (16.3) is lost. 

It is not necessary to repeat the computations of Sect. 13 since they remain 
unaltered. Essentially the only change is in the relation between the frequency 0 
and the wave number m. Here the fact of predominant physical interest is that 
for small values of m the relation is controlled chiefly by the gravitational con- 
stant g and for large values of m by T/Q. 

If one forms two-dimensional progressive waves by superposing the standing- 
wave solutions obtained from (24.9) and (24.10), a further significant physical 
fact appears: the wave velocity now has a minimum for some value of m>~, 
except for very shallow depth. These facts are displayed graphically in Fig. 11 
and further information is given in the associated discussion (the curves were % 
computed for water at 20' C and h = 00 or 1 cm). Formulas for the position 
of the minimum and various associated values are given for infinite depth in 
the following table; the numerical values are for water at 20” C (T = 72.8 dynes/cm, 
Q = 0.998 gm/cm3) : 

m,, = 1’~ g/T = 3.66 cm-l, 

2, = 2n j/T/es = 1.71 cm, 

c, = 4j4gT/e = 23.1 cmjsec , 
(24.13) 

o, = 4vm = 84.8 radianslsec = 13.5 cycles/set . 

When h 2 l/3 T/2eg there is no longer a minimum value of c for m> 0 ; in this 
case c increases monotonically with m. The critical depth for water is about 
0.33 cm. Except in this latter case every value of c has associated with it waves 
of two different lengths, each of which travels with velocity c. KELVIN suggested 
that the shorter waves, whose behavior is controlled chiefly by surface tension 
be called “ripples”. The suggestion has been followed for the most part (French : 
“ rideaux” ; German : “ Rippeln” or ” Krauselwellen”; Russian : “ ryabi “), but 
they are frequently also called “capillary waves” in contrast with “gravity 
waves “. 

The relation between o and m was subjected to a rather thorough experimental 
investigation by MATTHIESSEN (1889). He made measurements with water, 
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mercury, alcohol, ethyl ether and carbon disulfide with frequencies ranging 
from 8.4 to roughly 2000 cycles per second. Agreement between theory and 
measurement is generally within 5% with the greatest discrepancies occurring 
near the minima. RAYLEIGH (1890) and MICHIE SMITH (1890) were apparently 
the first to use the theoretical relation as a means of experimental determination 
of T, and it has become one of the standard experimental procedures. For more 
recent developments and further references see BROWN (1936) and TYLER (1941). 

Solutions for standing or progressive interfacial waves, analogous to those’ 
considered in Sect. 146, can be found by application of the same methods. Since 
the analysis is similar we give only the relation between o and m. If the two 
fluids fill the whole space, with their interface at y =O, then 

a2=*gm++m? 
41+ @a 

(24.14) 

If the lower fluid is of depth d,, the upper of depth d, and the interface at y = 0, 
then 

(24.15) 

In both (24.14) and (24.15) cr2>0 if 
TWG 

e2<e1+,; (24.16) 

thus the motion may be stable even when the lower fluid is less dense than the 
upper one. This is not true in the absence of surface tension, as inspection of 
(14.29) and (14.30) shows. 

The analogue of the next example of Sect. 146 is somewhat more complex, 
for two surface tensions are necessary. Let T be the surface tension at the free 
surface y =O, and T,, that at the interface y = -d,; let the rigid bottom be at 
y=-A=-d r-d,. Then the relation analogous to (14.31) is 

2 [el coth m dl coth m d, + e2] - 

ma) coth m d2 + er (I+ ,:ffi ms) coth m dr (24.17) 

The assumption of d, = co no longer results in any notable simplification of the 
equation. However, one may show that the solutions 02/gm are always real, 
and that they are positive if 

This is the same condition for stability as was found in (24.16) (and is still ne- 
cessary as well as sufficient). Much of the rest of the pure gravity-wave analysis 
of Sect. 146 may be carried through. Thus, if or is the larger and o2 the smaller 
root of (24.17) for a given m, then one may establish the inequality 

O<& < fl+&rns) tanhmd2<$ < 

< ~l+~m2)[l+~m2)min{l, 2tanhmh). i 

(24.19) 
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If q and qr2 are the profiles of the free surface and interface, respectively, then 
one finds, analogously to (14.34)~ 

(24.20) 

again, it follows from (24.18) that this ratio is positive for the larger and negative 
for the smaller of the two roots of (24.17). The discussion of the nature of the 
motion associated with the root o2 may be taken directly from Sect. 146; how- 
ever, the upper bound for the velocity c2 of a progressive wave of wave number m 
is now given by 

4 &n12!L,L 
gm m < :(I +&m2)tanhmd2< gd2(l+&m2). (24.21) 

Let us turn next to the situation in which the two fluids are moving and look 
for possible steady motions. Assume each fluid to move to the left with mean 
velocity ci and let Fi (z), i = 1, 2, be the complex velocity potentials. We again 
look for solutions in the form [cf. Eq. (14.36)] 

I$ (z) = - ci z + f; (2.) ) i = 1) 2) (24.22) 

where fi is assumed small with respect to ciz. Then the linearized boundary con- 
ditions corresponding to (14.37) are 

v(x) =dImfr(x--i0) =$Imf2(x+1:0). 

~Re{i~f2(~+iO)+~~f~(x+iO)}=$Re{igf~(x--iO)+c~f~(x--i0)- 
cz (24.23) 

If we look for a steady motion of the form 

-iZf;‘(x-io)}. I 

fi=a,e-imz, f2=a2einaz, (24.24) 

then substitution in (24.23) yields 

and 

?L=-L4 a 
5 c2 

~(e~cl"+e2c~)=(e~-e2)s+Tm2. 

The last equation will not have a real solution for rn,, assuming er> e2, unless 

4g(e1- e2)TS (elc: +e24". (24.26) 

There are then two solutions of the form (24.24). The effect of surface tension 
may be seen more clearly if one graphs each side of (24.25) and finds the inter- 
sections, if any. It will be shown in Sect. 26 that this type of motion is unstable 
if 1 cr - c2 1 becomes too large. 

Singular solutions. The methods used in Sect. 13~ for finding source- 
type solutions can generally be extended to take account of surface tension. 
Aside from the algebraic complications the chief difficulties are associated with 
selecting the proper boundary conditions at infinity. For a stationary source of 
pulsating strength one may still impose a radiation condition as in (13.9) and 
obtain the correct solution. However, for the steadily moving source of constant 
strength the proper choice is no longer clear. Although it is possible to fall back 
upon arguments based upon considerations of group velocity, they are not 
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completely convincing, so that it seems safer to formulate first an initial-value 
problem which can yield either of the two cases mentioned above as a limit 
when t-t co. First we give the velocity potential for a source of variable strength 
m(t), t &, 0, moving on an arbitrary path (u(t), b(t), c(t)). The potential function CD 
must satisfy the same conditions given on p. 491 except that 2 is now replaced by 

@‘t(% 0, 2, t) + g@y (x, 0, z, t) + f @yyy (% 0, z, t) = 0. (24.27) 

There is no special difficulty involved in finding @. For infinite depth, it is 
as follows : 

m (4 @ (x, y, z, t) = f$ - ~ %@I 
+ 

_____ 
+2 ydklgk+ T’k3 jd zm(z)sin[(t--z)l/gk+T’kS]e”rY+b(t)lJo(kR(z)), 

(24.28) 

0 0 

where we have written T’ for T/e. One may similarly find the function analogous 
to (13.53) by replacing gk by gk+T’k3. Knowledge of these functions allows 
one now to repeat, at least in part, the considerations of Sects. 22~ and 228. 

For a stationary source at (a, b, c) with strength m cos ot, the velocity po- 
tential may be easily derived from (24.28). It is as follows: 

co 
@(z,y,z,t)= 

I 
1+$ +20ad’T,ks+lpk--aek(Y+b)JO(kR)dk mcosatf 

0 I 

+2nm u2 g+ 3 T’Gj 
eke (Yfk) J, (k, R) sin o t , 

I 

(24.29) 

where k, is the real solution of crs = gk + T’k3. If the fluid is of depth 12, then 

@(x, Y, x9 4 
, 

= [~+t-,J1;$$-!$~~~~~ ’ 
ekkcoshk(hi+2aachoshk(y+lal~(kR)dk x 

T’k;+gk,+02 ___ x 
1 ’ (24.30) 

xmcosot+232m 
a2k+(3T’k~+g)sinh2k,h 

~e~~~sinhk~hcoshk~(b+k)coshk~(y+k)~J,(k~R)sinat, 

where k, is the real root of 

T’k3+gk-a2cothk.h=0. 

The velocity potential for a source moving in the direction Ox with constant 
velocity u. may also be obtained from (24.38) by a suitable limiting procedure, 
although the computation is somewhat more tedious. In a coordinate system 
moving with the source it is as follows for k = 00: 

ql(x,y,z)=f--2 r1 + ~~diU?V’~dk 
g+ T’ k2 

g+ T/k”--ku;cos2t9 X 

0 0 I 

X ek Wb) cos [k (x - a) cos 61 cos [k (z - c) sin $31 + 

Qo v (24.31) 
+4mz (-l)i-l 

&I,2 s 
0 

dtih,(G)$$x 
t 

X ekr(y+b) sin [ki (K - u) cos @] cos [kj (x - c) sin 61, 1 

See separate file errata.pdf


Ronald W. Yeung
"Surface Waves Online" - Copyright 2002, Regents of the University of California.  All Rights Reserved




